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Multiparty session types are designed to abstractly capture the structure of communication protocols
and verify behavioural properties. One important such property is progress, i.e., the absence of
deadlock. Distributed algorithms often resemble multiparty communication protocols. But proving
their properties, in particular termination that is closely related to progress, can be elaborate. Since
distributed algorithms are often designed to cope with faults, a first step towards using session types
to verify distributed algorithms is to integrate fault-tolerance.

We extend FTMPST—a version of fault-tolerant multiparty session types with failure patterns
to represent system requirements for system failures such as unreliable communication and process
crashes—by a novel, fault-tolerant loop construct with global escapes that does not require global
coordination. Each process runs its own local version of the loop. If a process finds a solution to the
considered problem, it does not only terminate its own loop but also informs the other participants via
exit-messages. Upon receiving an exit-message, a process immediately terminates its algorithm. To
increase efficiency and model standard fault-tolerant algorithms, these messages are non-blocking, i.e.,
a process may continue until a possibly delayed exit-message is received. To illustrate our approach,
we analyse a variant of the well-known rotating coordinator algorithm by Chandra and Toueg.

1 Introduction

Multi-Party Session Types (MPST) are used to statically ensure correctly coordinated behaviour in
systems without global control ([18, 13]). One important such property is progress, i.e., the absence
of deadlock. Like with every other static typing approach, the main advantage is their efficiency, i.e.,
they avoid the problem of state space explosion. MPST are designed to abstractly capture the structure
of communication protocols. They describe global behaviours as sessions, i.e., units of conversations
[18, 3, 4]. The participants of such sessions are called roles. Global types specify protocols from a global
point of view. These types are used to reason about processes formulated in a session calculus.

Distributed algorithms (DA) very much resemble multiparty communication protocols. An essential
behavioural property of DA is termination [27, 21], despite failures, but it is often elaborate to prove. It
turns out that progress (as provided by MPST) and termination (as required by DA) are closely related.

Many DA were designed in a fault-tolerant way, in order to work in environments, where they have to
cope with system failures—be it links dropping messages or processes crashing. We focus on masking
fault-tolerant algorithms (see [16]), i.e., safety and liveness requirements hold despite failures without
further intervention by the programmer.

While the detection of conceptual design errors is a standard property of type systems, proving
correctness of algorithms despite the occurrence of system failures is not. Likewise, traditional MPST
do not cover fault tolerance or failure handling. There are several approaches to integrate explicit
failure handling in MPST (e.g. [7, 6, 12, 28, 14, 1]). These approaches are sometimes enhanced with
recovery mechanisms such as [8] or even provide algorithms to help find safe states to recover from,
as in [22]. Many of these approaches introduce nested TRY-and-CATCH-blocks and a challenge is to
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ensure that all participants are consistently informed about concurrent THROWS of exceptions. Therefore,
exceptions are propagated within the system. Though explicit failure handling makes sense for high-level
applications, the required message overhead is too inefficient for many low-level algorithms. Instead,
these low-level algorithms are often designed to tolerate a certain amount of failures. Since we focus on
the communication structure of systems, additional messages as reaction to faults (e.g. to propagate faults)
are considered non-masking failure handling. In contrast, we expect masking fault-tolerant algorithms to
cope without messages triggered by faults. We study how much unhandled failures a well-typed system
can tolerate, while maintaining the typical properties of MPST.

Type systems are usually designed for failure-free scenarios. An exception is [19] that introduces
unreliable broadcast, where a transmission can be received by multiple receivers but not necessarily all
available receivers. In the latter case, the receiver is deadlocked. In contrast, we consider fault-tolerant
interactions, where in the case of a failure the receiver is not deadlocked.

The already mentioned systems in [7, 6, 12, 28, 14] extend session types with exceptions thrown by
processes within TRY-and-CATCH-blocks, interrupts, or similar syntax. They structurally and semantically
encapsulate an unreliable part of a protocol and provide some means to ’detect’ a failure and ’react’ to it.
Here we deliberately do not model how to ’detect’ a failure. Different system architectures might provide
different mechanisms to do so, for example, by means of time-outs. As is standard for the analysis of DA,
our approach allows us to port the verified algorithms on different system architectures that satisfy the
necessary system requirements.

Another essential difference is how systems react to faults. In [6], THROW-messages are propagated
among nested TRY-and-CATCH-blocks to ensure that all participants are consistently informed about
concurrent THROWS of exceptions. Fault-tolerant DA, however, have to deal with the problem of
inconsistency; one of their most challenging problems. Distributed processes usually cannot reliably
observe an error on another system part, unless they are informed by some system “device” (like the
“coordinator” of [28] or the “oracle” of [6]). Therefore, abstractions like unreliable failure detectors are
used to model this restricted observability which can, for example, be implemented by time-outs.

We extend FTMPST [23, 24], a version of fault-tolerant multiparty session types with failure patterns
to represent system requirements for system failures such as unreliable communication and process
crashes. We add a novel, fault-tolerant loop construct with global escapes but without a need for global
coordination. Thereby, we tackle an open question of [24], namely how to conveniently type unreliable
recursive parts of protocols. Distributed algorithms are often recursive and exit this recursion if a result
was successfully computed. In [24], weakly reliable branching was used to exit a standard recursion.
Unfortunately, this operation temporarily blocks some processes. Our novel loop construct overcomes
this problem.

Each loop of an algorithm has a unique identifier, where unique means from a global point of view.
Each process runs its own local version of the loop, but the local loops that jointly define a recursive
routine of the algorithm have the same identifier. If a process finds a solution to the considered problem, it
does not only terminate its own loop but also informs the other participants via exit-messages that may
carry a solution value. Upon receiving an exit-message, a process immediately terminates its algorithm.
To increase efficiency and model standard fault-tolerant algorithms, these messages are non-blocking, i.e.,
a process may continue until a possibly delayed exit-message is received. Since communication in the
system is asynchronous and because of faults such as message delays, many algorithms do not forbid
that different participants terminate the protocol concurrently. Hence, there may be several concurrent
exit-messages for the same local loop. The algorithm then has to ensure, that all of them carry the same
solution value—usually called agreement.
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To guide the behaviour of unreliable communication, we inherit from [24] the failure pattern used
in the semantics of processes. Note that these pattern are not defined but could be instantiated by an
application. This allows us to cover requirements on the system—as, e.g., a bound on the number of faulty
processes—as well as more abstract concepts like failure detectors. It is beyond the scope of this paper to
discuss how failure patterns could be implemented. To illustrate our approach we analyse a variant of the
well-known rotating coordinator algorithm by Chandra and Toueg.

2 Fault-Tolerant Types and Processes

Following [24], we consider three levels of failures in interactions:
Strongly Reliable (r) Neither the sender nor the receiver can crash as long as they are involved in this

interaction. The message cannot be lost by the communication medium. This form corresponds to
reliable communication as it was described in [2] in the context of distributed algorithms. This is
the standard, failure-free case.

Weakly Reliable (w) Both the sender and the receiver might crash at every possible point during this
interaction. But the communication medium cannot lose the message.

Unreliable (u) Both the sender and the receiver might crash at every possible point during this interac-
tion and the communication medium might lose the message. There are no guarantees that this
interaction—or any part of it—takes place. Here, it is difficult to ensure interesting properties in
branching.

We use the subscripts or superscripts r, w, or u to indicate actions of the respective kind. Our new loop
construct relies on unreliable interactions for the loop body such that the termination of the loop does not
cause any blocking of the interaction partners. However, the exit-messages should not be dropped before
the loop is terminated and are thus weakly reliable.

For clarity, we often distinguish names into values, i.e., the payload of messages, shared channels,
or session channels according to their usage; there is, however, no need to formally distinguish between
different kinds of names.

We assume that the sets N of names a,s,x . . .; R of roles n, r, . . .; L of labels l, ld, . . .; VT of type
variables t; and VP of process variables X are pairwise distinct. To simplify the reduction semantics of our
session calculus, we use natural numbers as roles (compare to [18]). Sorts S range over B,N, . . .. The set
E of expressions e,v,b, . . . is constructed from the standard Boolean operations, natural numbers, standard
arithmetic operators, tuples, names, and (in)equalities. We assume an evaluation function eval(·) that
evaluates expressions to values.

Global types specify the desired communication structure from a global point of view. In local types,
this global view is projected to the specification of a single role/participant. We start from standard MPST
([17, 18]) extended by unreliable communication and weakly reliable branching in [23, 24]. We then add
an unreliable loop construct with weakly reliable global escapes (highlighted in blue) in Figure 1.

A new session s with n roles is initialised with a[n](s).P and a[r](s).P via the shared channel a. We
identify sessions with their unique session channel.

The type r1 →r r2:⟨S⟩.G specifies a strongly reliable communication from role r1 to role r2 to transmit
a value of sort S and then continues with G. A system with this type will be guaranteed to perform a
corresponding action. In a session s this communication is implemented by the sender s[r1, r2]!r⟨e⟩.P1
(specified as [r2]!r⟨S⟩.T1) and the receiver s[r2, r1]?r(x).P2 (specified as [r1]?r⟨S⟩.T2). As a result, the
receiver instantiates x in its continuation P2 with the received value.
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Global Types Local Types Processes
P ::= a[n](s).P | a[r](s).P

G ::= r1 →r r2:⟨S⟩.G T ::= [r2]!r⟨S⟩.T | s[r1, r2]!r⟨e⟩.P
| [r1]?r⟨S⟩.T | s[r2, r1]?r(x).P

| r1 →u r2:l⟨S⟩.G | [r2]!ul⟨S⟩.T | s[r1, r2]!ul⟨e⟩.P
| [r1]?ul⟨S⟩.T | s[r2, r1]?ul⟨v⟩(x).P

| r1 →r r2:{li.Gi}i∈I
| [r2]!r{li.Ti}i∈I | s[r1, r2]!rl.P
| [r1]?r{li.Ti}i∈I | s[r2, r1]?r{li.Pi}i∈I

| r→w R:{li.Gi}i∈I,ld
| [R]!w{li.Ti}i∈I | s[r,R]!wl.P
| [r]?w{li.Ti}i∈I,ld | s[r j, r]?w{li.Pi}i∈I,ld

| G1 || G2 | P1 | P2
| (µt,c)G | t | (µt,c= n)T | t | (µX,c= n)P | X
| end | end | 0
| [R]∞c

e⟨S0⟩.G0;⟨S2⟩.G2 | [R]∞c=n
e [⟨S0⟩.T0]T1;⟨S2⟩.T2 | s[r,R]∞c=n

e [(x).P0]P1;(y).P2
| call⟨e⟩ | call⟨e⟩ | call⟨e,e′⟩ | exit⟨e,e′⟩

| if b then P1 else P2
| (νx)P | ⊥

| r1 → r2:⟨s′[r]:T ⟩.G | [r2]!⟨s′[r]:T ⟩.T ′ | s[r1, r2]!⟨⟨s′[r]⟩⟩.P
| [r1]?⟨s′[r]:T ⟩.T ′ | s[r2, r1]?((s′[r])).P

| sr1→r2 :M
Message Types Messages

mt ::= ⟨S⟩r | l⟨S⟩u | lr | lw m ::= ⟨v⟩r | l⟨v⟩u | lr | lw

| exit⟨id,S⟩ | s[r] | exit⟨id,v⟩ | s[r]

Figure 1: Syntax of Fault-Tolerant MPST with Global Escape Loops.

The type r1 →u r2:l⟨S⟩.G specifies an unreliable communication from r1 to r2 transmitting (if success-
ful) a label l and a value of sort S and then continues (regardless of the success of this communication) with
G. The unreliable counterparts of senders and receivers are s[r1, r2]!ul⟨e⟩.P1 (specified as [r2]!ul⟨S⟩.T1) and
s[r2, r1]?ul⟨v⟩(x).P2 (specified as [r1]?ul⟨S⟩.T2). The receiver s[r2, r1]?ul⟨v⟩(x).P2 declares a default value
v that is used instead of a received value to instantiate x after a failure. Moreover, a label is communicated
that helps us to ensure that a faulty unreliable communication does not influence later actions.

The strongly reliable branching r1 →r r2:{li.Gi}i∈I allows r1 to pick one of the branches offered by r2.
We identify the branches with their respective label. Selection of a branch is by s[r1, r2]!rl.P (specified as
[r2]!r{li.Ti}i∈I). Upon receiving l j, s[r2, r1]?r{li.Pi}i∈I (specified as [r1]?r{li.Ti}i∈I) continues with P j.

As discussed in [24], the counterpart of branching is weakly reliable and not unreliable. It is
implemented by r →w R:{li.Gi}i∈I,ld , where R ⊆ R and ld with d ∈ I is the default branch. We use a
broadcast from r to all roles in R to ensure that the sender can influence several participants consistently
(see [23, 24] for an explanation). The type system ensures that all processes that are not crashed will
move to the same branch. We often abbreviate branching w.r.t. a small set of branches by omitting the set
brackets and instead separating the branches by ⊕, where the last branch is always the default branch.
In contrast to the strongly reliable cases, s[r,R]!wl.P (specified as [R]!w{li.Ti}i∈I) allows to broadcast its
decision to R and s[r j, r]?w{li.Pi}i∈I,ld (specified as [r]?w{li.Ti}i∈I,ld) defines a default label ld.

We extend the standard operators for recursion (µt)G, (µX)P of [23, 24] by a counter (µX,c= n)P
(specified as (µt,c= n)T with the global type (µt,c)G), where n is a natural number that is increased by
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unfolding recursion and c can be used as pointer to the current value of the counter within expressions.
Note that we do that not only in processes but also in the corresponding types. These expressions allow us
to construct unique identifiers for loops within a surrounding recursion.

A loop s[r,R]∞c=n
e [(x).P0]P1;(y).P2 (specified as [R]∞c=n

e [⟨S0⟩.T0]T1;⟨S2⟩.T2) creates a loop eval(e)
in that role r of session s is currently running the loop body P1 and may interact with the roles in R
that are running their local versions of this loop. We identify a loop with its unique identifier eval(e)
that is unique for the whole derivation of the system and the same for all roles R∪{r}. Again, the loop
has a counter c= n that is increased in unfolding loops and can be used to create the unique identifiers
of loops nested within the current loop. Communication within a loop is unreliable. With call⟨e,v⟩
(specified as call⟨e⟩) role r invokes another iteration of the loop eval(e) given by the loop program (x).P0,
where x is instantiated with v. Role r can terminate its own loop and all loops of the other R by sending
exit⟨e,v′⟩. In this case, or upon receiving exit⟨id,v′⟩, role r continues with the loop continuation
(y).P2 of loop eval(e) = id, where y is instantiated by v′. The loop body P1 contains whatever is left of
the current iteration of the loop program P0. We initialise, as expected by the type system, a loop as
s[r,R]∞c=0

e [(x).P0]call⟨e,v⟩;(y).P2 such that its first step calls the first iteration of the loop.
The ⊥ denotes a process that crashed. Similar to [18], we use message queues to implement asynchrony

in sessions. Therefore, session initialisation introduces a directed and initially empty message queue
sr1→r2 :[ ] for each pair of roles r1 ̸= r2 of the session s. The separate message queues ensure that messages
with different sources or destinations are not ordered, but each message queue is FIFO. Since the different
forms of interaction might be implemented differently (e.g. by TCP or UDP), it makes sense to further
split the message queues into three message queues for each pair r1 ̸= r2 such that different kinds of
messages do not need to be ordered. To simplify the presentation of examples in this paper and not
to blow up the number of message queues, we stick to a single message queue for each pair r1 ̸= r2.
However, the correctness of our type system does not depend on this decision. We have six kinds of
messages m and corresponding message types mt in Figure 1—one for each kind of interaction. In
strongly reliable communication, a value v (of sort S) is transmitted in a message ⟨v⟩r of type ⟨S⟩r. In
unreliable communication, the message l⟨v⟩u (of type l⟨S⟩u) additionally carries a label l. For branching,
only the picked label l is transmitted and we add the kind of branching as superscript, i.e., message/type
lr is for strongly reliable branching and message/type lw for weakly reliable branching. The message
exit⟨id,v⟩ of type exit⟨id,S⟩ signals that the loop id can be terminated. Finally, the message/type s[r] is
for session delegation. A message queue M is a list of messages m and MT is a list of message types mt.

The remaining operators for independence G || G′; parallel composition P | P′; inaction end, 0; condi-
tionals if b thenP1 elseP2; session delegation r1 → r2:⟨s′[r]:T ⟩.G, s[r1, r2]!⟨⟨s′[r]⟩⟩.P, s[r2, r1]?((s′[r])).P;
and restriction (νx)P are all standard.

As usual, we assume that recursion variables are guarded and do not occur free in types or processes
and, similarly, that recursive calls call⟨e,v⟩,call⟨e⟩ are guarded within loop programs and do not occur
outside of the declaration of loop eval(e) in types or processes. To ensure that loops are uniquely identified,
their identifiers are described as expressions that have to evaluate to a unique identifier in a type and all its
unfoldings of recursion, i.e., within standard recursion or surrounding loops these identifiers have to be
build by some mechanism (e.g. a counter) that ensures uniqueness. More precisely, all iterations of a loop
have the same identifier, whereas a loop within a surrounding recursion or loop needs a fresh identifier for
every iteration of the surrounding recursion or loop. Moreover, the type system ensures that neither loop
bodies nor loop programs may contain free type variables.

In types (µt,c)G and (µt,c= n)T the type variable t and the variable c are bound in G, T . In processes
(µX,c= n)P the process variable X and the variable c are bound in P. Similarly, all names in round
brackets are bound in the remainder of the respective process, e.g. s is bound in P by a[n](s).P and x is
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bound in P by s[r1, r2]?r(x).P. A variable or name is free if it is not bound. Let FN(P) return the free
names of P.

Let subterm denote a (type or process) expression that syntactically occurs within another (type or
process) term. We use ’.’ (as e.g. in a[r](s).P) to denote sequential composition. In all operators the prefix
before ’.’ guards the continuation after the ’.’. Moreover, a loop is a guard for its loop continuation, but
its loop body is unguarded. Let ∏1≤i≤n Pi abbreviate P1 | . . . | Pn.

Let R(G) return all roles that occur in G. We write nsr(G), nsr(T ), and nsr(P), if none of the prefixes
in G, T , and P is strongly reliable or for delegation and if P, G, or T do not contain message queues. We
write unr(A) if nsr(A) and none of the prefixes in A is a weakly reliable branching.

A session channel and a role together uniquely identify a participant of a session, called an actor. A
process has an actor s[r] if it has an action prefix or a loop on s that mentions r as its first role. Let A(P)
be the set of actors of P.

As discussed in [23, 24], labels may carry additional runtime information such as timestamps, in order
to provide the technical means to implement the failure patterns introduced with the semantics below.

Allowing for runtime information in labels requires a subtle difference in the way labels are used. A
timestamp may be added by the sender to capture the transmission time, but for the receiver it is hard to
have this information already present in its label before or during reception. Similarly, types in our static
type system should not depend on any runtime information. Hence, in contrast to standard MPST, we
do not expect the labels of senders and receivers as well as the labels of processes and types to match
exactly. Instead we assume a predicate =̇ that compares two labels and is satisfied if the parts of the
labels that do not refer to runtime information correspond. If labels do not contain runtime information,
=̇ can be instantiated with equality. We require that =̇ is unambiguous on labels used in types, i.e.,
given two labels of processes lP, l′P and two labels of types lT , l′T then lP =̇ l′P ∧ lP =̇ lT ⇒ l′P =̇ lT and
lP =̇ lT ∧ lT ̸=̇ l′T ⇒ lP ̸=̇ l′T .

Of course, the presented type system remains valid if we use labels without additional runtime
information. Interestingly, also the static information in labels, that have to coincide for senders and
receivers and their types, can be exploited to guide communication. In contrast to standard MPST and to
support unreliable communication, our MPST variant will ensure that all occurrences of the same label are
associated with the same sort. This helps us in the case of failures to ensure the absence of communication
mismatches, i.e., the type of a transmitted value has to be the type that the receiver expects. Similarly,
labels are used in [5] to avoid communication errors.

Our type system verifies processes, i.e., implementations, against a specification that is a global type.
Since processes implement local views, local types are used as a mediator between the global specification
and the respective local end points. To ensure that the local types correspond to the global type, they are
derived by projection.

Projection maps global types onto the respective local type for a given role p. Projection of recursion
is standard except for the initialisation of the counter c with 0. Loops are projected as:

((µt,c)G)↾p ≜


G↾p if t does not occur in G
(µt,c= 0)G↾p else if p ∈ R(G)

end otherwise

([R]∞c
e⟨S0⟩.G0;⟨S2⟩.G2)↾p ≜

{
[R\{p}]∞c=0

e [⟨S0⟩.G0↾p]call⟨e⟩;⟨S2⟩.G2↾p if p ∈ R

G2↾p otherwise

Recursive types without their recursion variable are mapped to the projection of their recursion body
(similar to [9]), else if p occurs in the recursion body we map to a recursive local type, or else to successful
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termination. If projected on one of its roles p ∈ R, the global specification of the loop program G0 and the
global specification of the loop continuation G2 are projected on p. The counter is instantiated with 0 and
the loop body is instantiated with call⟨e⟩ to call the first loop iteration. Else, the loop is skipped and we
project the loop continuation G2 on p.

Projection of the remaining operators is given in [24] (and Appendix A).

3 A Semantics with Failure Patterns for Global Escape Loops

Before we describe the semantics, we introduce substitution and structural congruence as auxiliary
concepts. The application of a substitution {y/x} on a term A, denoted as A{y/x}, is defined as the result of
replacing all free occurrences of x in A by y, possibly applying alpha-conversion to avoid capture or name
clashes. For all names n ∈ N \{x} the substitution behaves as the identity mapping. We use substitution
on types as well as processes and naturally extend substitution to the substitution of variables by terms (to
unfold recursions) and names by expressions (to instantiate a bound name with a received value).

We use structural congruence to abstract from syntactically different processes with the same meaning,
where ≡ is the least congruence that satisfies alpha conversion and the rules:

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3)≡ (P1 | P2) | P3 (µX,c= n)0 ≡ 0
(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P (νx)(P1 | P2)≡ P1 | (νx)P2 if x /∈ FN(P1)

For the reduction semantics in Figure 2 we start with the rules of fault-tolerant processes from [24]
that we extend with the rules for our new loops (in blue colour). Similar to [18], session initialisation is
synchronous and communication within a session is asynchronous using message queues. The rules are
standard except for the six failure pattern (five pattern from [24] and one new pattern FPdrop for loops) and
three rules for system failures: (Crash) for crash failures, (ML) for message loss, and the new rule (EDrop)
that allows to drop exit-messages of loops. Failure patterns are predicates that we deliberately choose
not to define here (see below). They allow us to provide information about the underlying communication
medium and the reliability of processes.

Rule (Init) initialises a session with n roles. Session initialisation introduces a fresh session channel
and unguards the participants of the session. Finally, the message queues of this session are initialised
with the empty list under the restriction of the session channel.

Rule (RSend) implements an asynchronous strongly reliable message transmission. As a result, the
value eval(y) is wrapped in a message and added to the end of the corresponding message queue and
the continuation of the sender is unguarded. Rule (USend) is the counterpart of (RSend) for unreliable
senders. (RGet) consumes a message that is marked as strongly reliable with the index r from the head
of the respective message queue and replaces in the unguarded continuation of the receiver the bound
variable x by the received value y.

There are two rules for the reception of a message in an unreliable communication that are guided by
failure patterns. Rule (UGet) is similar to Rule (RGet), but specifies a failure pattern FPuget to decide
whether this step is allowed. This failure pattern could, e.g., be used to reject messages that are too old.
The condition l =̇ l′ ensures that the static information in the transmitted label matches the expectation
specified in the label of the receiver to avoid communication mismatches. The Rule (USkip) allows to skip
the reception of a message in an unreliable communication using a failure pattern FPuskip and instead
substitutes the bound variable x in the continuation with the default value dv. The failure pattern FPuskip
tells us whether a reception can be skipped (e.g. via failure detector).
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(Init) a[n](s).Pn | ∏1≤i≤n−1 a[i](s).Pi 7−→ (νs)
(
∏1≤i≤n Pi | ∏1≤i,j≤n,i̸=j si→j:[ ]

)
if a ̸= s

(RSend) s[r1, r2]!r⟨e⟩.P | sr1→r2 :M 7−→ P | sr1→r2 :M#⟨v⟩r if eval(e) = v
(RGet) s[r1, r2]?r(x).P | sr2→r1 :⟨v⟩r#M 7−→ P{v/x} | sr2→r1 :M
(USend) s[r1, r2]!ul⟨e⟩.P | sr1→r2 :M 7−→ P | sr1→r2 :M#l⟨v⟩u if eval(e) = v
(UGet) s[r1, r2]?ul⟨dv⟩(x).P | sr2→r1 :l′⟨v⟩u#M 7−→ P{v/x} | sr2→r1 :M if l =̇ l′, FPuget(s, r1, r2, l′, . . .)
(USkip) s[r1, r2]?ul⟨dv⟩(x).P 7−→ P{dv/x} if FPuskip(s, r1, r2, l, . . .)
(ML) sr1→r2 :l⟨v⟩u#M 7−→ sr1→r2 :M if FPml(s, r1, r2, l, . . .)
(RSel) s[r1, r2]!rl.P | sr1→r2 :M 7−→ P | sr1→r2 :M#lr

(RBran) s[r1, r2]?r{li.Pi}i∈I | sr2→r1 :lr#M 7−→ P j | sr2→r1 :M if l =̇ l j, j ∈ I
(WSel) s[r,R]!wl.P | ∏ri∈R sr→ri :Mi 7−→ P | ∏ri∈R sr→ri :Mi#lw

(WBran) s[r1, r2]?w{li.Pi}i∈I,ld | sr2→r1 :lw#M 7−→ P j | sr2→r1 :M if l =̇ l j, j ∈ I
(WSkip) s[r1, r2]?w{li.Pi}i∈I,ld 7−→ Pd if FPwskip(s, r1, r2, . . .)
(LStep) s[r,R]∞c=n

e [(x).P0]P1;(y).P2 | Q 7−→ s[r,R]∞c=n
e [(x).P0]P′

1;(y).P2 | Q′

if P1 | Q 7−→ P′
1 | Q′, onlyMQr↔R(Q,Q′)

(LCall) s[r,R]∞c=n
e [(x).P0]call⟨el,ev⟩;(y).P2 7−→

s[r,R]∞c=eval(n+1)
e [(x).P0] (P0{n/c}){v/x};(y).P2 if eval(e) = eval(el), eval(ev) = v

(LExitS) s[r,R]∞c=n
e [(x).P0]exit⟨el,ev⟩;(y).P2 | ∏ri∈R sr→ri :Mi 7−→

P2{v/y} | ∏ri∈R sr→ri :Mi#exit⟨id,v⟩ if eval(e) = eval(el) = id, eval(ev) = v
(LExitG) s[r,R]∞c=n

e [(x).P0]P1;(y).P2 | sr′→r:exit⟨id,v⟩#M 7−→
P2{v/y} | sr′→r:M if eval(e) = id, r′ ∈ R

(EDrop) sr2→r1 :exit⟨id,v⟩#M 7−→ sr2→r1 :M if FPdrop(r, id)
(Crash) P 7−→ ⊥ if FPcrash(P, . . .)
(If-T) if e then P else P′ 7−→ P if eval(e) is true
(If-F) if e then P else P′ 7−→ P′ if eval(e) is false
(Deleg) s[r1, r2]!⟨⟨s′[r]⟩⟩.P | sr1→r2 :M 7−→ P | sr1→r2 :M#s′[r]
(SRecv) s[r1, r2]?((s′[r])).P | sr2→r1 :s′′[r′]#M 7−→ P{s′′/s′}{r′/r} | sr1→r2 :M
(Par) P1 | P2 7−→ P′

1 | P2 if P1 7−→ P′
1

(Res) (νx)P 7−→ (νx)P′ if P 7−→ P′

(Rec) (µX,c= n)P 7−→ (P{n/c}){(µX,c=eval(n+1))P/X}
(Struc) P1 7−→ P′

1 if P1 ≡ P2, P2 7−→ P′
2, P′

2 ≡ P′
1

Figure 2: Reduction Rules (7−→) of Fault-Tolerant Processes with Global Escape Loops.

Rule (RSel) puts the label l selected by r1 at the end of the message queue towards r2. Its weakly
reliable counterpart (WSel) is similar, but puts the label at the end of all relevant message queues. With
(RBran) a label is consumed from the top of a message queue and the receiver moves to the indicated
branch. There are again two weakly reliable counterparts of (RBran). Rule (WBran) is similar to (RBran),
whereas (WSkip) allows r1 to skip the message and to move to its default branch if the failure pattern
FPwskip holds. The requirement l =̇ l j in RBran and WBran ensures as usual that indeed the branch
specified by the message at the queue is picked by the receiver. Note that this branch has to be identified
by the statically available information in the respective labels.

With (LStep) the body of a loop may (1) send a message to a message queue, (2) receive a message
from a queue, or (3) skip an outer loop-construct of nested loops to perform an output, input, call another
loop-iteration, or exit a loop. Therefore, the predicate onlyMQr↔R(Q,Q′) checks that Q and Q′ consist
only of message queues from r into roles within R or the other way around. Rule (LCall) puts loop
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eval(e) onto another iteration, where the counter is updated and x is instantiated with eval(ev) = v in
the loop program (x)P0. Here, the side condition eval(e) = eval(el) ensures that the correct loop is
iterated. Role r can terminate its loop eval(e) = eval(el) = id with (LExitS). This step reduces r to its loop
continuation instantiated with eval(ev) = v and adds to the message queues from r to all roles in R the
message exit⟨id,v⟩. Upon receiving exit⟨id,v⟩ in rule (LExitG), role r is induced to also terminate its
loop id and continue with its loop continuation instantiated with v.

The Rules (Crash) for crash failures and (ML) for message loss, describe failures of a system. With
Rule (Crash), P can crash if FPcrash, where FPcrash can e.g. model immortal processes or global bounds
on the number of crashes. (ML) allows to drop an unreliable message if the failure pattern FPml is valid.
FPml allows, e.g., to implement safe channels that never lose messages or a global bound on the number of
lost messages. Rule (EDrop), similarly allows to drop a message from a queue, but it does not implement
a failure. Instead it allows us to drop exit-messages of already terminated loops, i.e., FPdrop checks
whether the loop mentioned by the exit-message of the considered role is already terminated and only in
this case allows to drop the message. Since a loop id is run concurrently by several roles of which each
role runs its local version of the loop id, it cannot be avoided that several roles may actively terminate
their loop concurrently, causing several exit-messages for the same loop.

The remaining reduction rules for conditionals, delegation, parallel composition, restriction, recursion,
and structural congruence are standard, except for the counter in unfolding recursion.

We deliberately do not specify failure pattern, although we usually assume that the failure patterns
FPuget, FPuskip, FPwskip, and FPdrop use only local information, whereas FPml and FPcrash may use global
information of the system in the current run. We provide these predicates to allow for the implementation
of system requirements or abstractions like failure detectors that are typical for distributed algorithms.
Directly including them in the semantics has the advantage that all traces satisfy the corresponding
requirements, i.e., all traces are valid w.r.t. the assumed system requirements. An example for the
instantiation of these patterns is given implicitly via the Conditions 1.1–1.7 in Section 4 and explicitly
in Section 5. If we instantiate the patterns FPuget with true, the patterns FPuskip, FPwskip, FPcrash, FPml
with false, and the pattern FPdrop such that it is true whenever the mentioned loop is terminated by the
mentioned role, then we obtain a system without failures. In contrast, the instantiation of FPdrop as
above and the other five patterns with true results in a system, where failures can happen completely
non-deterministically at any time.

Note that we keep the failure patterns abstract and do not model how to check them in producing runs.
Indeed system requirements such as bounds on the number of processes that can crash usually cannot
be checked, but result from observations, i.e., system designers ensure that a violation of this bound is
very unlikely and algorithm designers are willing to ignore these unlikely events. In particular, FPml and
FPcrash are thus often implemented as oracles for verification, whereas e.g. FPuskip and FPwskip are often
implemented by system specific time-outs. Note that we are talking about implementing these failure
patterns and not formalising them. Failure patterns are abstractions of real world system requirements or
software. We implement them by conditions providing the necessary guarantees that we need in general
(i.e., for subject reduction and progress) or for the verification of concrete algorithms. In practice, we
expect that the systems on which the verified algorithms are running satisfy the respective conditions.
Accordingly, the session channels, roles, labels, processes, and loop-identifiers mentioned in Figure 2
are not parameters of the failure patterns, but just a vehicle to more formally specify the conditions on
failure patterns in Section 4. An implementation may or may not use these information to implement
these patterns but may also use other information such as runtime information about time or the number
of processes, as indicated by the . . . in failure patterns in Figure 2 such as FPcrash(P, . . .).
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Similarly, strongly reliable and weakly reliable interactions in potentially faulty systems are abstrac-
tions. They are usually implemented by handshakes and redundancy; replicated servers against crash
failures and retransmission of late messages against message loss. Algorithm designers have to be aware
of the additional costs of these interactions.

Consider an example of nested loops in types and its projection.

G ≜ (µt,c1)[{1}]∞c2
c1
⟨N⟩.[{1}]∞c3

(c1,c2)
⟨N⟩.end;⟨N⟩.call⟨c1⟩;⟨N⟩.t

G↾1 = (µt,c1 = 0)[ /0]∞c2=0
c1

[
⟨N⟩.[ /0]∞c3=0

(c1,c2)
[⟨N⟩.end]call⟨(c1,c2)⟩;⟨N⟩.call⟨c1⟩

]
call⟨c1⟩;⟨N⟩.t

To ensure that the loops are uniquely identified in all unfoldings of the surrounding recursion and the
outer loop, their identifiers c1 and (c1,c2) are build from counters. This system can be implemented as:

P ≜ (µX,c1 = 0)Pc1

Pc1 ≜ s[1, /0]∞c2=0
c1

[(x).Pc1,c2(x)]call⟨c1,0⟩;(y).X
Pc1,c2(x) ≜ s[1, /0]∞c3=0

(c1,c2)

[(
x′
)
.exit

〈
(c1,c2) ,x′+1

〉]
call⟨(c1,c2) ,x+1⟩;

(
y′
)
.Pc1,cont(y

′)

Pc1,cont(y
′) ≜ if y′ < 5 then call

〈
c1,y′+1

〉
else exit

〈
c1,y′+1

〉
P 7−→ P0{(µX,c1=1)Pc1/X}
7−→ s[1, /0]∞c2=1

0 [(x).P0,c2(x)]P0,0(0);(y).(µX,c1 = 1)Pc1

7−→∗ s[1, /0]∞c2=1
0 [(x).P0,c2(x)]call⟨0,2+1⟩;(y).(µX,c1 = 1)Pc1

7−→ s[1, /0]∞c2=2
0 [(x).P0,c2(x)]P0,1(3);(y).(µX,c1 = 1)Pc1

7−→∗ s[1, /0]∞c2=2
0 [(x).P0,c2(x)]exit⟨0,5+1⟩;(y).(µX,c1 = 1)Pc1

7−→ (µX,c1 = 1)Pc1{6/y} 7−→ P1{(µX,c1=2)Pc1/X}

4 Typing Fault-Tolerant Processes

The type of processes is checked using typing rules that define the derivation of type judgments. Within
type judgements, the type information are stored in type environments.

Definition 1 (Type Environments). The global, loop and session environments are given by

Γ ::= /0 | Γ · x:S | Γ ·a:G | Γ · l:S
Θ ::= /0 | Θ ·X:s[r]t | e:s[r]⟨S0,S2⟩
∆ ::= /0 | ∆ · s[r]:T | ∆ · sr1→r2 :MT∗

Global environments with assignments x:S of values to sorts, a:G of shared channels a to global types
(for session initialisation), and l:S of labels to sorts as well as session environments with assignments
s[r]:T of actors to local types and sr1→r2 :MT∗ of message queues to a list of message types are inherited
from [24]. We move assignments X:s[r]t of process variables to actors and type variables (to check
standard recursion) to the new loop environments that also contains assignments e:s[r]⟨S0,S2⟩ of loop
identifiers to actors and sorts (for the values used to call and exit a loop). Loop environments are used to
list active recursion and loops inside their respective bodies.

We write x♯Γ, x♯Θ, and x♯∆ if x does not occur in Γ, Θ, and ∆, respectively. We use · to add an
assignment provided that the new assignment is not in conflict with the type environment. More precisely,
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(Req)
a:G ∈ Γ |R(G)|= n Γ,Θ ⊢ P▷∆ · s[n]:G↾n

Γ,Θ ⊢ a[n](s).P▷∆
(If)

Γ ⊩ e:B Γ,Θ ⊢ P▷∆ Γ,Θ ⊢ P′ ▷∆

Γ,Θ ⊢ if e then P else P′ ▷∆

(Acc)
a:G ∈ Γ 0 < r < |R(G)| Γ,Θ ⊢ P▷∆ · s[r]:G↾r

Γ,Θ ⊢ a[r](s).P▷∆
(End)

noLoop(Θ)

Γ,Θ ⊢ 0▷ /0

(RSend)
Γ ⊩ y:S Γ,Θ ⊢ P▷∆ · s[r1]:T

Γ,Θ ⊢ s[r1, r2]!r⟨y⟩.P▷∆ · s[r1]:[r2]!r⟨S⟩.T
(Rec)

Γ ⊩ n:N Γ · c:N,Θ ·X:s[r]t ⊢ P▷ s[r]:T
Γ,Θ ⊢ (µX,c= n)P▷ s[r]:(µt,c= n)T

(RGet)
x♯(Γ,∆,s) Γ · x:S,Θ ⊢ P▷∆ · s[r1]:T

Γ,Θ ⊢ s[r1, r2]?r(x).P▷∆ · s[r1]:[r2]?r⟨S⟩.T
(Var)

Γ,Θ ·X:s[r]t ⊢ X ▷ s[r]:t

(USend)
Γ ⊩ y:S l =̇ l′ l′:S ∈ Γ Γ,Θ ⊢ P▷∆ · s[r1]:T

Γ,Θ ⊢ s[r1, r2]!ul⟨y⟩.P▷∆ · s[r1]:[r2]!ul′⟨S⟩.T
(Par)

Γ,Θ ⊢ P▷∆ Γ,Θ ⊢ P′ ▷∆′

Γ,Θ ⊢ P | P′ ▷∆ ·∆′

(UGet)
x♯(Γ,∆,s) Γ ⊩ v:S l =̇ l′ l′:S ∈ Γ Γ · x:S,Θ ⊢ P▷∆ · s[r1]:T

Γ,Θ ⊢ s[r1, r2]?ul⟨v⟩(x).P▷∆ · s[r1]:[r2]?ul′⟨S⟩.T
(Crash)

nsr(∆)
Γ,Θ ⊢ ⊥▷∆

(RSel)
j ∈ I l =̇ l j Γ,Θ ⊢ P▷∆ · s[r1]:Tj

Γ,Θ ⊢ s[r1, r2]!rl.P▷∆ · s[r1]:[r2]!r{li.Ti}i∈I
(WSel)

j ∈ I l =̇ l j Γ,Θ ⊢ P▷∆ · s[r]:Tj

Γ,Θ ⊢ s[r,R]!wl.P▷∆ · s[r]:[R]!w{li.Ti}i∈I

(RBran)
∀ j ∈ I2. ∃i ∈ I1. li =̇ l′j ∧Γ,Θ ⊢ Pi ▷∆ · s[r1]:Tj

Γ,Θ ⊢ s[r1, r2]?r{li.Pi}i∈I1
▷∆ · s[r1]:[r2]?r{l′i.Ti}i∈I2

(Res1)
x♯(Γ,∆) Γ · x:S,Θ ⊢ P▷∆

Γ,Θ ⊢ (νx)P▷∆

(WBran)
ld =̇ l′d ∀ j ∈ I2. ∃i ∈ I1. li =̇ l′j ∧Γ,Θ ⊢ Pi ▷∆ · s[r1]:Tj

Γ,Θ ⊢ s[r1, r2]?w{li.Pi}i∈I1,ld ▷∆ · s[r1]:[r2]?w{l′i.Ti}i∈I2,l′d

(Deleg)
Γ,Θ ⊢ P▷∆ · s[r1]:T

Γ,Θ ⊢ s[r1, r2]!⟨⟨s′[r]⟩⟩.P▷
∆ · s[r1]:[r2]!⟨s′[r]:T ′⟩.T · s′[r]:T ′

(SRecv)
Γ,Θ ⊢ P▷∆ · s[r1]:T · s′[r]:T ′

Γ,Θ ⊢ s[r1, r2]?((s′[r])).P▷
∆ · s[r1]:[r2]?⟨s′[r]:T ′⟩.T

(Loop)

x,y♯(Γ,∆,s) unr(T0) unr(T1) Γ · x:S0 · c:N,e:s[r]⟨S0,S2⟩ ⊢ P0 ▷ s[r]:T0
Γ ⊩ n:N Γ · c:N,e:s[r]⟨S0,S2⟩ ⊢ P1 ▷ s[r]:T1 Γ · y:S2,Θ ⊢ P2 ▷∆ · s[r]:T2

Γ,Θ ⊢ s[r,R]∞c=n
e [(x).P0]P1;(y).P2 ▷∆ · s[r]:[R]∞c=n

e [⟨S0⟩.T0]T1;⟨S2⟩.T2

(Call)
Γ ⊩ ev:S0

Γ,Θ · e:s[r]⟨S0,S2⟩ ⊢ call⟨e,ev⟩▷ s[r]:call⟨e⟩
(Exit)

Γ ⊩ ev:S2

Γ,Θ · e:s[r]⟨S0,S2⟩ ⊢ exit⟨e,ev⟩▷ s[r]:T1

Figure 3: Typing Rules for Fault-Tolerant Systems with Global Escape Loops.

Γ · x:S implies x♯Γ, Γ · l:S implies l♯Γ, Θ ·X:s[r]t implies X, t♯Θ, Θ · e:s[r]⟨S0,S2⟩ implies e♯Θ, ∆ · s[r]:T
implies (∄T ′. s[r]:T ′ ∈ ∆), and ∆ · sr1→r2 :M implies (∄M ′. sr1→r2 :M ′ ∈ ∆). We naturally extend this
operator towards sets, i.e., Γ ·Γ′ implies (∀A ∈ Γ′. Γ ·A), Θ ·Θ′ implies (∀A ∈ Θ′. Θ ·A), and ∆ ·∆′ implies
(∀A ∈ ∆′. ∆ ·A). The conditions described for the operator · for global and session environments are
referred to as linearity. Accordingly, we denote type environments that satisfy these properties as linear
and restrict in the following our attention to linear environments. We abstract in session environments
from assignments towards terminated local types, i.e., ∆ · s[r]:end= ∆.

A type judgement is of the form Γ,Θ ⊢ P▷∆, where Γ is a global environment, Θ is a loop environment,
P ∈ P is a process, and ∆ is a session environment. A process P is well-typed w.r.t. Γ and ∆ if Γ ⊢ P▷∆

can be derived from the rules in the Figures 3 and 4. We write nsr(∆) (or unr(∆)) if for all types T in ∆

we have nsr(T ) (or unr(T )) and if ∆ does not contain message queues. With Γ ⊩ y:S we check that y is an
expression of the sort S if all names x in y are replaced by arbitrary values of sort Sx for x:Sx ∈ Γ.
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(Res2)

{s[r]:G↾r | r ∈ R(G)} · {sr→r′ :[ ] | r, r′ ∈ R(G′)∧ r ̸= r′} sZ⇒ ∆′

s♯(Γ,∆) a:G ∈ Γ,Θ Γ ⊢ P▷∆ ·∆′

Γ ⊢ (νs)P▷∆

(MQComR)
Γ ⊩ v:S Γ,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT
Γ,Θ ⊢ sr1→r2 :⟨v⟩r#M▷ sr1→r2 :⟨S⟩r#MT

(MQComU)
Γ ⊩ v:S l =̇ l′ l′:S ∈ Γ Γ,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT

Γ,Θ ⊢ sr1→r2 :l⟨v⟩u#M▷ sr1→r2 :l′⟨S⟩u#MT

(MQBranR)
l =̇ l′ Γ,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT
Γ,Θ ⊢ sr1→r2 :lr#M▷ sr1→r2 :l′ r#MT

(MQBranW)
l =̇ l′ Γ,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT
Γ,Θ ⊢ sr1→r2 :lw#M▷ sr1→r2 :l′w#MT

(MQDeleg)
Γ,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT

Γ,Θ ⊢ sr1→r2 :s′[r]#M▷ sr1→r2 :s′[r]#MT
(MQNil)

Γ,Θ ⊢ sr1→r2 :[ ]▷ sr1→r2 :[ ]

(MQExit)
eval(e) = id Γ ⊩ v:S Γ,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT
Γ,Θ ⊢ sr1→r2 :exit⟨id,v⟩#M▷ sr1→r2 :exit⟨e,S⟩#MT

Figure 4: Runtime Typing Rules for Fault-Tolerant Systems.

For the rules in Figure 3 we adapted the rules of [24] and extended them by rules for loops. We added
the loop environment to all rules that is only relevant for typing recursion and loops. In (End) we add the
condition noLoop(Θ) that checks that Θ does not contain loop identifiers, to ensure that no branch of a
loop program or loop body terminates with 0.

(Loop) requires the types of a loop program T0 and a loop body T1 to be unreliable (unr(T0) and
unr(T1)). It checks the loop program P0 and the loop body P1 against their types, but reduces in this check
the loop environment to the information for the current loop. This ensures that P0 and P1 do not contain
free process variables and no calls or exists of surrounding loops. We do not forbid complete recursions
or nested loops inside a loop program/body, where the type system ensures their completion before the
end of the loop program/body. As in recursion via (Rec), we also reduce the session environment to the
actor that initiates this loop. Finally, (Loop) checks the loop continuation P2 against its type T2, where Θ

and ∆ are not reduced. Note that to apply this rule, the expression e used to create the identifier of the
loop in the process and the type have to match exactly, i.e., are not evaluated.

(Call) is similar to (Var) and checks that the considered recursion or loop is considered active by the
loop environment. Additionally it verifies the sort of the transmitted value. Also (Exit) checks the sort of
the transmitted value, requires that the current session environment contains only the actor that invoked
the considered loop, and that this loop is considered active by the loop environment. Since (Exit) does not
implement any requirement on the type T1, it does intuitively allow to ignore whatever is left of the loop
body.

Figure 4 presents the runtime typing rules, i.e., the typing rules for processes that may result from
steps of a system that implements a global type. Since it covers only operators that are not part of
initial systems, a type checking tool might ignore them. We need these rules however for the proofs
of progress and subject reduction. Under the assumption that initial systems cannot contain crashed
processes, Rule (Crash) may be moved to the set of runtime typing rules.

Rule (Res2) types sessions that are already initialised and that may have performed already some of
the steps described by their global type. The relation s7→ is given in Figure 5 in the Appendix and describes
how a session environment evolves alongside reductions of the system, i.e., it emulates the reduction steps
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of processes. As an example consider the rule ∆ ·s[r1]:[r2]!r⟨S⟩.T ·sr1→r2 :MT s7→∆ ·s[r1]:T ·sr1→r2 :MT#⟨S⟩r

that emulates (RSend). Let sZ⇒ denote the reflexive and transitive closure of s7→.
(Res2) and the remaining rules of Figure 4 except for (MQExit) are from [24] extended by the loop

environment Θ. (MQExit) checks exit-messages on a message queue.
We have to prove that our extended type system satisfies the standard properties of MPST, i.e., subject

reduction and progress. Because of the failure pattern in the reduction semantics in Figure 2, subject
reduction and progress do not hold in general. Instead we have to fix conditions on failure patterns that
ensure these properties. Subject reduction needs one condition on crashed processes and progress requires
that no part of the system is blocked. In fact, different instantiations of these failure patterns may allow
for progress. As in [23, 24], we leave it for future work to determine what kind of conditions on failure
patterns or requirements on their interactions are necessary. Here, we extend the conditions given in
[23, 24] by a condition for FPdrop.

Condition 1 (Failure Pattern).
1. If FPcrash(P, . . .) then nsr(P).
2. The failure pattern FPuget(s, r1, r2, l, . . .) is always valid.
3. The pattern FPml(s, r1, r2, l, . . .) is valid iff FPuskip(s, r2, r1, l, . . .) is valid.
4. If FPcrash(P, . . .) and s[r] ∈ A(P) is an actor then eventually the pattern FPuskip(s, r2, r, l, . . .) and

FPwskip(s, r2, r, l, . . .) hold for all r2, l.
5. If FPcrash(P, . . .) and s[r] ∈ A(P) then eventually FPml(s, r1, r, l, . . .) for all r1, l and FPdrop(r, id).
6. If FPwskip(s, r1, r2, . . .) then s[r2] is crashed, i.e., the system does no longer contain an actor s[r2]

and the message queue sr2→r1 is empty.
7. If r terminated the loop id then eventually FPdrop(r, id) and if FPdrop(r, id) then r terminated id.

The crash of a process should not block strongly reliable actions, i.e., only processes with nsr(P) can
crash (Condition 1.1). Condition 1.2 requires that no process can refuse to consume a message on its
queue to prevent deadlocks that may arise from refusing a message that is never dropped. Condition 1.3
requires that if a message can be dropped from a message queue then the corresponding receiver has to
be able to skip this message and vice versa. Similarly, processes that wait for messages from a crashed
process have to be able to skip (Condition 1.4) and all messages of a queue towards a crashed receiver
can be dropped (Condition 1.5). A weakly reliable branching request should not be lost. To ensure that
the receiver of such a branching request can proceed if the sender is crashed but is not allowed to skip
the reception of the branching request before the sender crashed, we require that FPwskip(s, r1, r2, . . .)
is false as long as s[r2] is alive or messages on the respective queue are still in transit (Condition 1.6).
Condition 1.7 ensures that exit-messages can be dropped after the corresponding loop was terminated but
not before.

It is important to remember that these conditions are minimal assumptions on the system requirements
and that system requirements are abstractions. Parts of them may be realised by actual software-code
(which then allows to check them), whereas other parts of the system requirements may not be realised at
all but rather observed (which then does not allow to verify them). Because of that, it is an established
method to verify the correctness of algorithms w.r.t. given system requirements (e.g. in [10, 20, 26]), even
if these system requirements are not verified and often do not hold in all (but only nearly all) cases.

Subject reduction tells us that derivatives of well-typed systems are again well-typed. This ensures
that our formalism can be used to analyse processes by static type checking. For subject reduction we
consider only types that were generated from a set of global types, one for each session, using coherence.
Coherence intuitively describes that a session environment captures all local endpoints of a collection of
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global types. Since we capture all relevant global types in the global environment, we define coherence on
pairs of global and session environments.

Definition 2 (Coherence). The type environments Γ,∆ are coherent if, for all session channels s in ∆,
there exists a global type G in Γ such that the restriction of ∆ on assignments with s is the set ∆′ such that:

{s[r]:G↾r | r ∈ R(G)} ·
{

sr→r′ :[ ] | r, r′ ∈ R(G)
} sZ⇒ ∆

′

We use sZ⇒ in the above definition to define coherence for systems that already performed some steps.

Theorem 2 (Subject Reduction). If Γ,Θ ⊢ P▷∆, Γ,∆ are coherent, and P 7−→ P′, then there is some ∆′

such that Γ,Θ ⊢ P′ ▷∆′.

The proof is by induction on the derivation of P 7−→ P′. In every case, we use the information about the
structure of the processes to generate partial proof trees for the respective typing judgement. Additionally,
we use Condition 1.1 to ensure that the type environment of a crashed process cannot contain the types of
reliable communication prefixes.

Progress states that no part of a well-typed and coherent system can block other parts, that eventually
all matching communication partners are unguarded, that interactions specified by the global type can
happen, and that there are no communication mismatches. Subject reduction and progress together then
imply session fidelity, i.e., that processes behave as specified in their global types.

To ensure that the interleaving of sessions and session delegation cannot introduce deadlocks, we
assume an interaction type system as introduced in [3, 18]. For this type system it does not matter whether
the considered actions are strongly reliable, weakly reliable, or unreliable. More precisely, we can adapt
the interaction type system of [3] in a straightforward way to the above session calculus, where unreliable
communication and weakly reliable branching is treated in exactly the same way as strongly reliable
communication/branching and loops are treated in the same way as standard recursion. We say that P
is free of cyclic dependencies between sessions if this interaction type system does not detect any cyclic
dependencies. In this sense fault-tolerance is more flexible than explicit failure handling, which often
requires a more substantial revision of the interaction type system to cover the additional dependencies
that are introduced e.g. by the propagation of faults.

Theorem 3 (Progress/Session Fidelity). Let Γ,Θ ⊢ P ▷∆, Γ,∆ be coherent, and let P be free of cyclic
dependencies between sessions. Assume that in the derivation of Γ,Θ ⊢ P ▷∆, whenever a[n](s).Q or
a[r](s).Q in P, then a:G ∈ Γ, |R(G)| = n, and there are a[n](s).Qn as well as a[ri](s).Qi in P for all
1 ≤ ri < n.

1. Then either P does not contain any action prefixes or P 7−→ P′.
2. If P does not contain recursion or loops, then there exists P′ such that P 7−→∗ P′ and P′ does not

contain any action prefixes.

The proof of progress relies on the Conditions 1.2–1.7 to ensure that failures cannot block the system:
in the failure-free case unreliable messages are eventually received (1.2), the receiver of a lost message
can skip (1.3), no receiver is blocked by a crashed sender (1.4), messages towards receivers that crashed
or skipped can be dropped (1.5 + 1.3), branching requests cannot be ignored (1.6), and exit-messages can
be dropped eventually if and only if the corresponding loop was already terminated.

5 The Rotating Coordinator Algorithm

To illustrate the benefits of our global escape loops, we present an implementation of the rotating
coordinator algorithm [10, 15], which is superior to the version without loops presented in [23, 24].
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The rotating coordinator algorithm is a small but not trivial consensus algorithm. It was designed
for systems with crash failures, but the majority of the algorithm can be implemented with unreliable
communication. The goal is that every agent i eventually decides on a proposed belief value, where no
two agents decide on different values. It is a round based algorithm, where each round consists of four
phases. In each round, one process acts as a coordinator decided by round robin, denoted by c.

In Phase 1 every agent i sends its current belief to the coordinator c.
In Phase 2 the coordinator waits until it has received at least half of the messages of the current round

and then sends the best belief to all other agents.
In Phase 3 the agents either receive the message of the coordinator or suspect the coordinator to have

crashed and reply with ack or nack accordingly. Suspicion can yield false positives.
In Phase 4 the coordinator waits, as in Phase 2, until it has received at least half of the messages of the

current round. Then, if at least half of the messages were ack, it sends a weakly reliable global
escape containing the decision.

It is possible for agents to skip rounds by suspecting the coordinator of the current round and by
proceeding to the next round. There are also no synchronisation fences thus it is possible for the agents to
be in different rounds and have messages of different rounds in the system. Having agents in different
rounds makes proving correctness much more difficult.

We use the labels pi and (pi,r), where i ∈ {1,2,3} specifies the number of the current phase and r
is a natural number that specifies the current round. We use pi as static information and r as runtime
information in the labels. Therefore, pi =̇ (pi,r) =̇ (pi,r′) holds for all i, r, and r′. The additional runtime
information can be used in the failure patterns, e.g. to drop outdated messages. We assume the sorts
Sbelief = {0,1} and Sack = {t,f}. Let n be the number of agents.

We start with the specification of the algorithm as a global type. Let
(⊙

1≤i≤n πi
)
.G abbreviate

π1. . . . .πn.G to simplify the presentation, where G is a global type and π1, . . . ,πn are sequences of prefixes.
More precisely, each πi is of the form πi,1. . . . .πi,m and each πi, j is a type prefix of the form r1 →u r2:l⟨S⟩
or r→w R:l1.T1 ⊕ . . .⊕ ln.Tn ⊕ ld, where the latter case represents a weakly reliable branching prefix (as
used in [24]) with the branches l1, . . . , ln, ld, the default branch ld, and where the next global type provides
the missing specification for the default case.

Grc(n) ≜ [{1, . . . ,n}]∞k
1⟨Sbelief⟩.

( ⊙
1≤c≤n

( ⊙
1≤i≤n,i̸=c

i→u c:p1⟨Sbelief⟩
)
.
( ⊙

1≤i≤n,i̸=c

c→u i:p2⟨Sbelief⟩
)
.

( ⊙
1≤i≤n,i ̸=c

i→u c:p3⟨Sack⟩
))

.call⟨1⟩;⟨Sbelief⟩.end

Grc(n) specifies a loop containing a collection of n rounds, where each process functions as a coordinator
once. This collection of n rounds is specified with the first

⊙
. By unfolding the loop and increasing the

counter k, Grc(n) starts the next n rounds. The following three
⊙

specify the Phases 1–3 of the algorithm
within one round. Since Phase 4 only involves exiting the loop, it is not directly visible in the global type.

In Phase 1 all processes except the coordinator c transmit a belief to c using label p1. In Phase 2 c
transmits a belief to all other processes using label p2. Then all processes transmit a value of type Sack to
the coordinator using label p3 in Phase 3. Finally, in Phase 4 the coordinator can terminate the protocol
by sending a global escape message containing the decision. All interactions in the specification are
unreliable.
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In the following, we implement the algorithm as a process. Let
(⊙

1≤i≤n πi
)
.P abbreviate the sequence

π1. . . . .πn.P, where P is a process and π1, . . . ,πn are sequences of prefixes.

Sys
(
n,V⃗

)
≜ a[n](s).P(n,n,vn) | ∏

1≤i<n

a[i](s).P(i,n,vi)

P(i,n,vi) ≜ s[i,{1, . . . ,n}\{i}]∞k=0
1 [(vi).P0(i,n,k,vi)]call⟨1,vi⟩;(v).0

P0(i,n,k,vi) ≜
( ⊙

1≤c≤n

if i= c then PC
1 (i,n,k ·n+ c,vi) else PNC

1 (i,n,c,k ·n+ c,vi)
)
.call⟨1,vi⟩

Sys
(
n,V⃗

)
describes the session initialisation of a system with n participants and the (initial) knowledge

V⃗ = {vi | 1 ≤ i≤ n}, where vi is the initial belief of role i. Let
∣∣∣⃗V ∣∣∣ ≜ |{i | vi ̸=⊥}| return the number of

non-empty entries. P(i,n,vi) describes a process i in a set of n processes. Each process is described as
a loop, where the loop program runs n rounds before calling another loop-iteration. Once a decision is
reached and the loop ends, the loop continuation is instantiated with the decision value.

PC
1 (c,n,r,vc) ≜

( ⊙
1≤i≤n,i̸=c

s[c, i]?u (p1,r)⟨⊥⟩(vi)
)
.

if
∣∣∣⃗V ∣∣∣≥ ⌈

n−1
2

⌉
then PC

2

(
c,n,r,best(⃗V ),best(⃗V )

)
else PC

2 (c,n,r,vc,⊥)

PNC
1 (i,n,c,r,vi) ≜ s[i,c]!u (p1,r)⟨vi⟩.PNC

2 (i,n,c,r,vi)

Every non-coordinator PNC
1 (i,n,c,r,vi) sends its own belief via unreliable communication to the coordina-

tor and proceeds to Phase 2. The coordinator receives (some of) these messages and writes each one into
its knowledge vector before proceeding to Phase 2. If the reception of at least half of the messages was
successful, it is updating its belief using the function best() that returns the best belief value. Otherwise, it
continues to use its own belief. We are using

⌈
n−1

2

⌉
to check for a majority, since in our implementation

processes do not transmit to themselves.

PC
2 (c,n,r,vc,x) ≜

( ⊙
1≤i≤n,i̸=c

s[c, i]!u (p2,r)⟨x⟩
)
.PC

3 (c,n,r,vc)

PNC
2 (i,n,c,r,vi) ≜ s[i,c]?u (p2,r)⟨⊥⟩(x).

if x =⊥ then PNC
3 (i,n,c,r,vi,f) else PNC

3 (i,n,c,r,x,t)

In Phase 2, the coordinator sends its updated belief to all other processes via unreliable communication
and proceeds. Note that x is either ⊥ or the best belief identified in Phase 1. If a non-coordinator process
successfully receives a belief other than ⊥, it updates its own belief with the received value and proceeds
to Phase 3, where we use the Boolean value t for the acknowledgement. If the coordinator is suspected to
have crashed or ⊥ was received, the process proceeds to Phase 3 with the Boolean value f, signalling
nack.

PC
3 (c,n,r,vc) ≜

( ⊙
1≤i≤n,i̸=c

s[c, i]?u (p3,r)⟨⊥⟩(vi)
)
.PC

4

(
c,n,V⃗

)
PNC

3 (i,n,c,r,vi,b) ≜ s[i,c]!u (p3,r)⟨b⟩

In Phase 3, every non-coordinator sends either ack or nack to the coordinator. If the coordinator suc-
cessfully receives the message, it writes the Boolean value at the index of the sender into its knowledge
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vector. In case of failure, ⊥ is used as default. After that the processes continue with Phase 4. The missing
continuation for non-coordinators is implemented by the next round.

PC
4

(
c,n,V⃗

)
≜ if ack(⃗V )≥

⌈
n−1

2

⌉
then exit⟨l,vc⟩ else

In Phase 4, all non-coordinators move on to the next round. The coordinator checks if at least half of the
non-coordinator roles signalled acknowledgement, utilising the function ack() to count. If it received
enough acknowledgments, it sends a global escape message containing the decision value, which causes
all participants to eventually terminate. Otherwise, the coordinator continues with the next round. The
missing continuation after else is implemented by the next round.

The main difference between this implementation and the previous version without loops of [23, 24]
lies in Phase 4. In the previous version, the coordinator transmitted the decision via broadcasting one
of the labels Zero, One, or ld. The first two labels represented a decision and terminated the protocol,
whereas the default label ld specified the need for another round:

PC
4

(
c,n,V⃗

)
≜ if ack(⃗V )≥

⌈
n−1

2

⌉
then (if vc = 0 then s[c,I ]!wZero.0

else s[c,I ]!wOne.0) else s[c,I ]!wld

PNC
4

(
i,n,c,V⃗

)
≜ s[i,n]?wZero.0⊕One.0⊕ ld

where I = {1, . . . ,n}\{c}. This caused all non-coordinators to wait for the coordinator’s decision before
proceeding to the next round.

In our new implementation, presented above, non-coordinators can proceed to the next round immedi-
ately after Phase 3. They can also skip entire rounds by suspecting the coordinator. Thus, processes can
diverge as freely in their rounds as in the original rotating coordinator algorithm [10]. Exiting the loop
mimics the so-called reliable broadcast of the original algorithm.

Chandra and Toueg [10] introduce the failure detector ♢S that is called eventually strong, meaning
that (1) eventually every process that crashes is permanently suspected by every correct process and (2)
there is a time after which some correct process is never suspected by any other process. We observe
that the suspicion of senders is only possible in Phase 3, where processes may suspect the coordinator of
the round. Accordingly, the failure pattern FPuskip implements this failure detector to allow processes to
suspect unreliable coordinators in Phase 2, i.e., with label p2. In Phase 1 and Phase 3 FPuskip may allow
to suspect processes that are not crashed after the coordinator received enough messages. In all other
cases, this pattern eventually returns true iff the respective sender is crashed. Moreover, FPuskip is true for
outdated messages, i.e., messages with a round number smaller than the current round of the process.

FPuget returns true. To prevent the system from becoming blocked, FPml and FPdrop eventually return
true for messages that cannot be consumed, i.e., for messages with label p2 that were suspected using
♢S , skipped p1/p3-messages, messages from old rounds, and messages after the termination of the loop.
Otherwise, FPml and FPdrop returns false. By the system requirements in [10], no messages get lost, but it
is realistic to assume that receivers can drop messages of skipped receptions on their incoming message
queues. As there are at least half of the processes required to be correct for this algorithm, we implement
FPcrash by false if only half of the processes are alive and true otherwise. These failure patterns satisfy
the Conditions 1.1–1.7.

The proof of termination, agreement, and validity of the algorithm is discussed in [24]. The main
difference is, that there might be several exit-messages, but the requirement on the majority in Phase 4
ensures that all such messages carry the same decision value.



18 FTMPST with Global Escape Loops

6 Conclusions

We present an unreliable loop construct with weakly reliable global escape for fault-tolerant multiparty
session types (FTMPST) for systems that may suffer from message loss or crash failures. We prove
subject reduction and progress and present a small but relevant case study.

Currently we require all actions within loop programs/bodies to be unreliable. This ensures that a
communication partner is not blocked if a loop is terminated. An interesting question for further work
is how to relax this requirement. For instance, we may allow for a variant of weakly reliable branching
within loop programs/bodies, where moving to the default branch is not only allowed if the sender is
suspected to be crashed but also if the receiver suspects that the sender already terminated its loop or at
least already moved to another loop iteration.

Moreover, there are a couple of open problems from [23, 24]. A really difficult challenge is to extend
branching to at least some kind of message loss, while maintaining the strong properties of the type system
and ensuring that no two alive processes move to different branches.

We also want to study whether and in how far we can introduce weakly reliable or unreliable session
delegation. Similarly, we want to study unreliable variants of session initialisation including process
crashes and lost messages during session initialisation. Unreliable variants of session initialisation open a
new perspective on MPST-frameworks such as [11] with dynamically changing network topologies and
sessions for that the number of roles is determined at run-time.

In [24] one set of conditions on failure patterns was fixed to prove subject reduction and progress. We
can also think of other sets of conditions. The failure pattern FPuget can be used to reject the reception
of outdated messages. Therefore, we drop Condition 1.2 and instead require for each message m whose
reception is refused that FPml ensures that m is eventually dropped from the respective queue and that
FPuskip allows to skip the reception of these messages. An interesting question is to find minimal
requirements and minimal sets of conditions that allow to prove correctness in general.

It would be nice to also fully automate the remaining proofs for the distributed algorithm in Section 5,
namely for validity, agreement, and termination. The approach in [25] sequentialises well-typed systems
and gives the much simpler remaining verification problem to a model checker. Interestingly, the main
challenges to adopt this approach are not the unreliable or weakly reliable prefixes but the failure patterns.
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This Appendix contains additional material and the missing proofs of the above paper. In case of
acceptance, we will publish the Appendix as technical report on arXiv.

A Fault-Tolerant Types and Processes

Definition 3 (Well-Formedness, Global Type). A global type G is well-formed if
(1) it neither contains free nor unguarded type variables,
(2) all loops eval(e) in G and all iterations of recursion or loops in G are pairwise distinct,
(3) R(G) = {1, . . . , |R(G)|},
(4) for all its subterms of the form r1 →r r2:⟨S⟩.G′ or r1 →u r2:l⟨S⟩.G′, we have r1 ̸= r2,
(5) for all its subterms of the form r1 →r r2:{li.Gi}i∈I or r→w R:{li.Gi}i∈I,ld , we have r1 ̸= r2, r /∈ R, d ∈ I,

and the labels li are pairwise distinct, and
(6) for all its subterms of the form G1 || G2, we have R(G1)∩R(G2) = /0.

We restrict our attention to well-formed global types.
Definition 4 (Well-Formedness, Local Type). A local type T is well-formed if
(1) it neither contains free nor unguarded type variables,
(2) all loops eval(e) in T and all iterations of recursion or loops in T are pairwise distinct, and
(3) for all its subterms of the form [r]!r{li.Ti}i∈I, [r]?r{li.Ti}i∈I, [R]!w{li.Ti}i∈I,ld , or [R]?w{li.Ti}i∈I,ld , we

have d ∈ I and the labels li are pairwise distinct.
We restrict our attention to well-formed local types.
The projections of the global types for communication in [23, 24] are obtained straightforwardly from

the projection of their respective strongly reliable counterparts:

(r1 →⋄ r2:S.G)↾p ≜


[r2]!⋄S.G↾p if p= r1

[r1]?⋄S.G↾p if p= r2

G↾p otherwise

where either ⋄= r, S= ⟨S⟩ or ⋄= u, S= l⟨S⟩ and

(
r1 →⋄ R:{li.Gi}i∈ID

)
↾p ≜


[R]!⋄{li.Gi↾p}i∈I if p= r1

[r1]?⋄{li.Gi↾p}i∈ID if B⊔
i∈I (Gi↾p) otherwise

where either ⋄ = r, R = r2, B is p = r2, D is empty or ⋄ = w, R = R, B is p ∈ R, D is , ld. In the
last case of strongly reliable or weakly reliable branching—when projecting onto a role that does not
participate in this branching—we map to

⊔
i∈{1,...,n} (Gi↾p) = (G1↾p)⊔ . . .⊔ (Gn↾p). The ⊔ allows to unify

the projections Gi↾p if all of them return the same kind of branching input [p]?⋄ . . . were the respective sets
of branches my differ as long as the same label is always followed by the same local type. The operation
⊔ is (similar to [29]) inductively defined as:

T ⊔T = T

([r]?rI1)⊔ ([r]?rI2) = [r]?r(I1 ⊔ I2)

([r]?wI1)⊔ ([r]?wI2) = [r]?w(I1 ⊔ I2) if I1 and I2 have the same default branch

I⊔ /0 = I

I⊔ ({l.T}∪ J) =

{
{l.(T ′⊔T )}∪ ((I\{l.T ′})⊔ J) if l.T ′ ∈ I
{l.T}∪ (I⊔ J) if l /∈ I
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where T,T ′ ∈ T are local types, I, I1, I2,J are sets of branches of local types of the form l.T , l /∈ I is short
hand for ∄T ′. l.T ′ ∈ I, and is undefined in all other cases. By the first line, identical types can be merged.
By the second and third line, local types for the reception of a branching request can be merged if they
have the same prefix and the respective sets of branches can be merged. The third line, for the weakly
reliable case, additionally requires that the two sets of branches have the same default branch. The sets of
branches, that need to be merged according to the second and third line, contain elements of the form l.T ,
where l is a label and T a local type. The last two lines above inductively define how to merge such sets,
i.e., here we overload the operator ⊔ on local types to an operator on sets of branches of local types. The
case distinction in the last line ensures that elements l.T with a label that occurs in only one of the two
sets can be kept, but if both sets contain an element with the same label then the respective local types
have to be merged for the resulting set.

The mergeability relation ⊔ states that two types are identical up to their branching types, where
only branches with distinct labels are allowed to be different. This ensures that if the sender r1 in
r1 →r r2:{li.Gi}i∈I decides to branch then only processes that are informed about this decision can adapt
their behaviour accordingly; else projection is not defined.

The remaining global types are projected as follows:

(r1 → r2:⟨s[r]:T ⟩.G)↾p ≜


[r2]!⟨s[r]:T ⟩.G↾p if p= r1

[r1]?⟨s[r]:T ⟩.G↾p if p= r2

G↾p otherwise

(G1 || G2)↾p ≜

{
G1↾p if p /∈ R(G2)

G2↾p if p /∈ R(G1)

t↾p ≜ t end↾p ≜ end

The projection of delegation is similar to communication. The projection of G1 || G2 on p is not
defined if p occurs on both sides of this parallel composition; it is Gi↾p if p occurs in exactly one side
i ∈ {1,2}; or it is (G1 || G2)↾p = G1↾p = G2↾p = end if p does not occur at all. Type variables and
successful termination are mapped onto themselves. We denote a global type G as projectable if for all
r ∈ R(G) the projection G↾r is defined. We restrict our attention to projectable global types. Projection
maps well-formed global types onto the respective local type for a given role p, where the results of
projection—if defined—are again well-formed.

B Typing Fault-Tolerant Processes

We use typing rules to derive type judgements, where we assume that all mentioned global types are
well-formed and projectable, all local types are well-formed, and all environments are linear.We observe
that all new cases are quite similar to their strongly reliable counterparts.

Rule (RSend) in Figure 3 checks strongly reliable senders, i.e., requires a matching strongly reliable
sending in the local type of the actor and compares the actor with this type. With Γ ⊩ y:S we check that y
is an expression of the sort S if all names x in y are replaced by arbitrary values of sort Sx for x:Sx ∈ Γ.
Then the continuation of the process is checked against the continuation of the type. The unreliable
case is very similar, but additionally checks that the label is assigned to the sort of the expression in Γ.
Rule (RGet) type strongly reliable receivers, where again the prefix is checked against a corresponding
type prefix and the assumption x:S is added for the continuation. Again the unreliable case is very similar,
but apart from the label also checks the sort of the default value.

Rule (RSel) checks the strongly reliable selection prefix, that the selected label matches one of the
specified labels, and that the process continuation is well-typed w.r.t. the type continuation following the
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selected label. The only difference in the weakly reliable case is the set of roles for the receivers. For
strongly reliable branching in (RBran) we check the prefix and that for each branch in the type there is a
matching branch in the process that is well-typed w.r.t. the respective branch in the type. For the weakly
reliable case we have to additionally check that the default labels of the process and the type coincide.

Rule (Crash) for crashed processes checks that nsr(∆), i.e., that for every type G or T in ∆ the predicate
nsr(G) or nsr(T ) holds.

The combination of the 7 conditions in Conditions 1 in Section 4 might appear quite restrictive
as e.g. the combination of the Condition 1.4 and 1.6 ensures the correct behaviour of weakly reliable
branching such that branching messages can be skipped if and only if the respective sender has crashed. An
implementation of such a weakly reliable interaction in an asynchronous system that is subject to message
losses and process crashes, might require something like a perfect failure detector or actually solving
consensus1. It is important to remember that these conditions are minimal assumptions on the system
requirements and that system requirements are abstractions. Parts of them may be realised by actual
software-code (which then allows to check them), whereas other parts of the system requirements may not
be realised at all but rather observed (which then does not allow to verify them). Weakly reliable branching
is a good example of this case. The easiest way to obtain a weakly reliable interaction, is by using a
handshake communication and time-outs. If the sender time-outs while waiting for an acknowledgement,
it resends the message. If the sender does not hear from its receiver for a long enough period of time, it
assumes that the receiver has crashed and proceeds. With carefully chosen time-frames for the time-outs,
this approach is a compromise between correctness and efficiency. In a theoretical sense, it is clearly not
correct. There is no time-frame such that the sender can be really sure that the receiver has crashed. From
a practical point of view, this is not so problematic, since in many systems failures are very unlikely. If
failures that are so severe that they are not captured by the time-outs are extremely unlikely, then it is
often much more efficient to just accept that the algorithm is not correct in these cases. Trying to obtain
an algorithm that is always correct might be impossible or at least usually results into very inefficient
algorithms. Moreover, verifying this requires to also verify the underlying communication infrastructure
and the way in that failures may occur, which is impossible or at least impracticable. Because of that,
it is an established method to verify the correctness of algorithms w.r.t. given system requirements (e.g.
in [10, 20, 26]), even if these system requirements are not verified and often do not hold in all (but only
nearly all) cases.

Let us have a closer look at the typing rules in the Figures 3 and 4. We observe that all typing rules
are clearly distinguished by the outermost operator of the process in the conclusion except that there are
two typing rules for restriction. With that, given a type judgement Γ,Θ ⊢ P▷∆, we can use the structure
of P—with a case split for restriction—to reason about the structure of the proof tree that was necessary
to obtain Γ,Θ ⊢ P▷∆ and from that derive conditions about the nature of the involved type environments.
If P is e.g. a parallel composition P1 | P2 then, since there is only one rule to type parallel compositions
(the Rule (Par)), Γ,Θ ⊢ P1 | P2 ▷∆ implies that there are ∆1,∆2 such that ∆ = ∆1 ·∆2, Γ,Θ ⊢ P1 ▷∆1, and
Γ,Θ ⊢ P2 ▷∆2. In the following, we write ’by Rule (Par)’ as short hand for ’by the clear distinction of the
typing rules by the process in the conclusion and Rule (Par) in particular’ and similar for the other rules.

In the following we prove some properties of our MPST variant. We start with an auxiliary result,
proving that structural congruence preserves the validity of type judgements. The proof is by induction on
P ≡ P′. In each case we can use the information about the structure of the process that is provided by the
considered rule of structural congruence to conclude on the last few typing rules that had to be applied to

1Note that we consider in Section 5 a consensus algorithm. So, if the Condition 1 requires a solution of consensus, an
example on top of that solving consensus would be pointless.



24 FTMPST with Global Escape Loops

(T-RSend)
∆ · s[r1]:[r2]!r⟨S⟩.T · sr1→r2 :MT s7→ ∆ · s[r1]:T · sr1→r2 :MT#⟨S⟩r

(T-RGet)
∆ · s[r1]:[r2]?r⟨S⟩.T · sr2→r1 :⟨S⟩r#MT s7→ ∆ · s[r1]:T · sr2→r1 :MT

(T-USend)
∆ · s[r1]:[r2]!ul⟨S⟩.T · sr1→r2 :MT s7→ ∆ · s[r1]:T · sr1→r2 :MT#l⟨S⟩u

(T-UGet)
∆ · s[r1]:[r2]?ul⟨S⟩.T · sr2→r1 :l⟨S⟩u#MT s7→ ∆ · s[r1]:T · sr2→r1 :MT

(T-USkip)
∆ · s[r1]:[r2]?ul⟨S⟩.T s7→ ∆ · s[r1]:T

(T-ML)
∆ · sr1→r2 :l⟨S⟩u#MT s7→ ∆ · sr1→r2 :MT

(T-RSel)
j ∈ I

∆ · s[r1]:[r2]!r{li.Ti}i∈I · sr1→r2 :MT s7→ ∆ · s[r1]:Tj · sr1→r2 :MT#lrj

(T-RBran)
j ∈ I

∆ · s[r1]:[r2]?r{li.Ti}i∈I · sr2→r1 :lrj#MT s7→ ∆ · s[r1]:Tj · sr2→r1 :MT

(T-WSel)
j ∈ I R= {r1, . . . , rn}

∆ · s[r]:[R]!w{li.Ti}i∈I,ld · sr→r1 :MT1 · . . . · sr→rn :MTn
s7→

∆ · s[r]:Tj · sr→r1 :MT1#lwj · . . . · sr→rn :MTn#lwj

(T-WBran)
j ∈ I

∆ · s[r1]:[r2]?w{li.Ti}i∈I,ld · sr2→r1 :lwj #MT s7→ ∆ · s[r1]:Tj · sr2→r1 :MT

(T-WSkip)
∆ · s[r1]:[r2]?w{li.Ti}i∈I,ld

s7→ ∆ · s[r1]:Td

(T-Rec)
∆ · s[r]:(µt,c= n)T s7→ ∆ · s[r]:(T{n/c}){(µt,c=eval(n+1))T/t}

(T-Deleg)
∆ · s[r1]:[r2]!⟨s′[r]:T ′⟩.T · s′[r]:T ′ · sr1→r2 :MT s7→ ∆ · s[r1]:T · sr1→r2 :MT#s′[r]

(T-SRecv)
∆ · s[r1]:[r2]?⟨s′[r]:T ′⟩.T · sr2→r1 :s′[r]#MT s7→ ∆ · s[r1]:T · s′[r]:T ′ · sr2→r1 :MT

(T-LStep)
∆ · s[r]:T1

s7→ ∆′ · s[r]:T ′
1

∆ · s[r]:[R]∞c=n
e [⟨S0⟩.T0]T1;⟨S2⟩.T2

s7→ ∆′ · s[r]:[R]∞c=n
e [⟨S0⟩.T0]T ′

1;⟨S2⟩.T2

(T-LCall)
∆ · s[r]:[R]∞c=n

e [⟨S0⟩.T0]call⟨e⟩;⟨S2⟩.T2
s7→ ∆ · s[r]:[R]∞c=eval(n+1)

e [⟨S0⟩.T0]T0{n/c};⟨S2⟩.T2

(T-LExitS)
R= {r1, . . . , rn}

∆ · s[r]:[R]∞c=n
e [⟨S0⟩.T0]T1;⟨S2⟩.T2 · sr→r1 :MT1 · . . . · sr→rn :MTn

s7→
∆ · s[r]:T2 · sr→r1 :MT1#exit⟨e,S2⟩ · . . . · sr→rn :MTn#exit⟨e,S2⟩

(T-LExitG)
re ∈ R

∆ · s[r]:[R]∞c=n
e [⟨S0⟩.T0]T1;⟨S2⟩.T2 · sre→r:exit⟨e,S2⟩#MT s7→ ∆ · s[r]:T2 · sre→r:MT

(T-EDrop)
∆ · sr2→r1 :exit⟨e,S⟩#MT s7→ ∆ · sr2→r1 :MT

Figure 5: Reduction Rules for Session Environments.



L. Bartl, J. Linne, & K. Peters 25

derive the type judgement in the assumption. From these partial proof trees we obtain enough information
to construct the proof tree for the conclusion. The proof is very similar to the respective proof in [24]. We
highlight the differences in blue color.

Lemma 4 (Subject Congruence). If Γ,Θ ⊢ P▷∆ and P ≡ P′ then Γ,Θ ⊢ P′ ▷∆.

Proof. The proof is by induction on P ≡ P′.

Case P | 0 ≡ P: Assume Γ,Θ ⊢ P | 0▷∆. By the Rule (Par), then there are ∆P,∆0 such that ∆ = ∆P ·∆0,
Γ,Θ ⊢ P▷∆P, and Γ,Θ ⊢ 0▷∆0. Moreover, by Rule (End), Γ,Θ ⊢ 0▷∆0 implies that ∆0 = /0 and,
thus, ∆ = ∆P. Then also Γ,Θ ⊢ P▷∆.
For the opposite direction assume Γ,Θ ⊢ P▷∆. By Rule (End), Γ,Θ ⊢ 0▷ /0. With Rule (Par) and
because ∆ = ∆ · /0, then Γ,Θ ⊢ P | 0▷∆.

Case P1 | P2 ≡ P2 | P1: Assume Γ,Θ ⊢ P1 | P2 ▷∆. By Rule (Par), then there are ∆P1 ,∆P2 such that
∆ = ∆P1 ·∆P2 and Γ,Θ ⊢ Pi ▷∆Pi . By Rule (Par) and since ∆ = ∆P1 ·∆P2 implies ∆ = ∆P2 ·∆P1 , then
Γ,Θ ⊢ P2 | P1 ▷∆.
The opposite direction is similar.

Case P1 | (P2 | P3)≡ (P1 | P2) | P3: Assume Γ,Θ ⊢ P1 | (P2 | P3)▷∆.
By Rule (Par), then there are ∆P1 ,∆P2 ,∆P3 such that ∆ = ∆P1 · (∆P2 ·∆P3) and Γ,Θ ⊢ Pi ▷∆Pi . By
Rule (Par) and because ∆ = (∆P1 ·∆P2) ·∆P3 , then Γ,Θ ⊢ (P1 | P2) | P3 ▷∆.
The opposite direction is similar.

Case (µX,c= n)0 ≡ 0: Assume Γ,Θ ⊢ (µX,c= n)0 ▷∆. By Rule (Rec), then ∆ = s[r]:(µt,c= n)T ,
Γ ⊩ n:N, Γ · c:N,Θ ·X:s[r]t ⊢ 0▷ s[r]:T , and, by Rule (End), then ∆′ = /0, T = end, and noLoop(Θ).
Since (µt,c= n)end= end and ∆ · s[r]:end= ∆, then ∆ = /0. By Rule (End), then Γ,Θ ⊢ 0▷∆.
For the opposite direction assume Γ,Θ ⊢ 0▷∆. By Rule (End), then ∆ = /0 and noLoop(Θ). Since n
is a number, Γ ⊩ n:N. By Rule (End), then also Γ · c:N,Θ ·X:s[r]t ⊢ 0▷∆. By Rule (Rec) and since
(µt)end= end and ∆ · s[r]:end= ∆, then Γ,Θ ⊢ (µX,c= n)0▷∆.

Case (νx)0 ≡ 0: Assume Γ,Θ ⊢ (νx)0▷∆. By one of the Rules (Res1) or (Res2), then there are Γ′,∆′

such that Γ ·Γ′,Θ ⊢ 0▷∆ or Γ ·Γ′,Θ ⊢ 0▷∆ ·∆′. In both cases we can conclude with Rule (End) that
the session environment is empty, i.e., ∆ = /0 and ∆ ·∆′ = /0, and that noLoop(Θ). By Rule (End),
then Γ,Θ ⊢ 0▷∆.
For the opposite direction assume Γ,Θ ⊢ 0 ▷∆. By Rule (End), then ∆ = /0 and noLoop(Θ). By
Rule (End), then Γ · x:S,Θ ⊢ 0▷∆ for some sort S—regardless of whether x is a value or a session
channel. By Rule (Res1), then Γ,Θ ⊢ (νx)0▷∆.

Case (νx)(νy)P ≡ (νy)(νx)P: Assume Γ,Θ ⊢ (νx)(νy)P▷∆. By alpha-conversion and the Rules (Res1)
and (Res2), then there is Γ′ and some (possibly empty) ∆′ such that—for all combinations of the
Rules (Res1) and (Res2) for the restrictions of x and y—we have Γ ·Γ′,Θ ⊢ P ▷∆ ·∆′. By the
commutativity and associativity of · and two corresponding applications of the Rules (Res1) and
(Res2), then also Γ,Θ ⊢ (νy)(νx)P▷∆.
The opposite direction is similar.

Case (νx)(P1 | P2)≡ P1 | (νx)P2 if x /∈ FN(P1): Assume Γ,Θ ⊢ (νx)(P1 | P2) ▷∆. By one of the re-
striction rules, (Res1) or (Res2), then x♯(Γ,∆) and there are Γ′,∆′ such that Γ ·Γ′,Θ ⊢ P1 | P2 ▷∆ ·∆′,
where Γ′ assigns to x either a sort or a global type and ∆′ is either empty or contains only ac-
tors and message queues. Since x /∈ FN(P1) and by Rule (Par), then there are ∆P1 ,∆P2 such that
∆ = ∆P1 ·∆P2 , Γ,Θ ⊢ P1 ▷∆P1 , and Γ ·Γ′,Θ ⊢ P2 ▷∆P2 ·∆′. With one of the Rules (Res1) or (Res2),
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then Γ,Θ ⊢ (νx)P2 ▷∆P2 . With Rule (Par), then Γ,Θ ⊢ P1 | (νx)P2 ▷∆.
The opposite direction is similar.

Moreover, types are preserved modulo substitution of names by values of the same sort. The proof is
by induction on the typing rules. Again the proof is similar to the proof in [24]. Since we use expression
to construct unique identifiers for loops in types, we have to apply the substitution to all parts of the type
judgement. In the type environments substitution only affects names and expressions.

Lemma 5 (Substitution). If Γ · c:Sc,Θ ⊢ Q▷∆ and Γ ⊩ d:Sc, then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

Proof. The proof is by induction on the derivation of Γ · c:Sc,Θ ⊢ Q▷∆.

(Req) Then, Q = a[n](s).P, a:G ∈ Γ, |R(G)| = n, and Γ · c:Sc,Θ ⊢ P ▷∆ · s[n]:G↾n. Without loss of
generality, assume s ̸= c. Because of linearity, a:G ∈ Γ implies a ̸= c. By the induction hypothesis,
Γ · c:Sc,Θ ⊢ P▷∆ · s[n]:G↾n and Γ ⊩ d:Sc imply Γ{d/c},Θ{d/c} ⊢ P{d/c}▷∆{d/c} · s[n]:(G{d/c})↾n.
By (RReq), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(Acc) Then, Q = a[r](s).P, a:G ∈ Γ, 0 < r < |R(G)|, and Γ · c:Sc,Θ ⊢ P ▷∆ · s[r]:G↾r. Without loss of
generality, assume s ̸= c. Because of linearity, a:G ∈ Γ implies a ̸= c. By the induction hypothesis,
Γ{d/c},Θ{d/c} ⊢ P{d/c}▷∆{d/c} · s[r]:G↾r. By (Acc), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(RSend) Then, Q = s[r1, r2]!r⟨y⟩.P, ∆ = ∆′ · s[r1]:[r2]!r⟨S⟩.T , Γ · c:Sc,Θ ⊩ y:S, and Γ · c:Sc,Θ ⊢ P ▷∆′ ·
s[r1]:T . Because Γ · c:Sc ⊩ y:S, s ̸= c. With Γ ⊩ d:Sc, then Γ ⊩ y{d/c}:S and Γ{d/c} ⊩ y{d/c}:S.
By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ P{d/c} ▷∆′{d/c} · s[r1]:T{d/c}. By (RSend), then
Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(RGet) Then, Q = s[r1, r2]?r(x).P, ∆ = ∆′ · s[r1]:[r2]?r⟨S⟩.T , x♯(Γ,c,∆′,s), and Γ · c:Sc · x:S,Θ ⊢ Pi ▷∆′ ·
s[r1]:T . Because Γ · c:Sc · x:S,Θ ⊢ Pi ▷∆′ · s[r1]:T , s ̸= c. By the induction hypothesis, Γ{d/c} ·
x:S,Θ{d/c} ⊢ P{d/c}▷∆′{d/c} · s[r1]:T{d/c}. By (RGet), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(USend) Then, Q = s[r1, r2]!ul⟨y⟩.P, ∆ = ∆′ · s[r1]:[r2]!ul′⟨S⟩.T , l =̇ l′, Γ · c:Sc ⊩ y:S, and Γ · c:Sc,Θ ⊢ P▷
∆′ ·s[r1]:T . Because of Γ ·c:Sc ⊩ y:S, s ̸= c. With Γ⊩ d:Sc, then Γ⊩ y{d/c}:S and Γ{d/c}⊩ y{d/c}:S.
By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ P{d/c} ▷∆′{d/c} · s[r1]:T{d/c}. By (USend), then
Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(UGet) Then, Q = s[r1, r2]?ul⟨v⟩(x).P, ∆ = ∆′ · s[r1]:[r2]?ul′⟨S⟩.T , l =̇ l′, Γ ·c:Sc ⊩ v:S, x♯(Γ,c,∆′,s), and
Γ · c:Sc · x:S,Θ ⊢ P▷∆′ · s[r1]:T . Because of Γ · c:Sc ⊩ v:S, s ̸= c. With Γ ⊩ d:Sc, then Γ ⊩ v{d/c}:S
and Γ{d/c}⊩ v{d/c}:S. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ P{d/c}▷∆′{d/c}·s[r1]:T{d/c}.
By (UGet), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(RSel) Then, Q = s[r1, r2]!rl.P, ∆ = ∆′ · s[r1]:[r2]!r{li.Ti}i∈I, j ∈ I, l =̇ l j, and Γ · c:Sc,Θ ⊢ P▷∆′ · s[r1]:Tj.
Because Γ · c:Sc,Θ ⊢ P▷∆′ · s[r1]:Tj, s ̸= c. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ P{d/c}▷
∆′{d/c} · s[r1]:Tj{d/c}. By (RSel), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(RBran) Then, Q = s[r1, r2]?r{li.Pi}i∈I1
, ∆ = ∆′ ·s[r1]:[r2]?r{li.Ti}i∈I2

, and, for all j ∈ I2 exists some i ∈ I1
such that li =̇ l j and Γ · c:Sc,Θ ⊢ Pi ▷∆′ · s[r1]:Tj. Fix j and i. Because Γ · c:Sc,Θ ⊢ Pi ▷∆′ · s[r1]:Tj,
s ̸= c. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ Pi{d/c}▷∆′{d/c} · s[r1]:Tj{d/c}. By (RBran),
then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(WSel) Then, Q = s[r,R]!wl.P, ∆ = ∆′ · s[r]:[R]!w{li.Ti}i∈I,ld , j ∈ I, l =̇ l j, and Γ · c:Sc,Θ ⊢ P▷∆′ · s[r]:Tj.
Because Γ · c:Sc,Θ ⊢ P▷∆′ · s[r]:Tj, s ̸= c. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ P{d/c}▷
∆′{d/c} · s[r]:Tj{d/c}. By (WSel), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.
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(WBran) Then, Q = s[r1, r2]?w{li.Pi}i∈I1,ld , ∆ = ∆′ · s[r1]:[r2]?w{li.Ti}i∈I2,l′d
, ld =̇ l′d, and, for all j ∈ I2

exists some i ∈ I1 such that li =̇ l j and Γ ·c:Sc,Θ ⊢ Pi ▷∆′ · s[r1]:Tj. Fix j and i. Because Γ ·c:Sc,Θ ⊢
Pi ▷∆′ · s[r1]:Tj, s ̸= c. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ Pi{d/c}▷∆′{d/c} · s[r1]:Tj{d/c}.
By (WBran), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(If) Then, Q = if e then P else P′, Γ · c:Sc ⊩ e:B, Γ · c:Sc,Θ ⊢ P ▷∆, and Γ · c:Sc,Θ ⊢ P′ ▷∆. With
Γ ⊩ d:Sc, then Γ ⊩ e{d/c}:B and Γ{d/c} ⊩ e{d/c}:B. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢
P{d/c} ▷ ∆{d/c} and Γ{d/c},Θ{d/c} ⊢ P′{d/c} ▷ ∆{d/c}. By (If), then Γ{d/c},Θ{d/c} ⊢ Q{d/c} ▷
∆{d/c}.

(Deleg) Then Q= s[r1, r2]!⟨⟨s′[r]⟩⟩.P, ∆=∆′ ·s[r1]:[r2]!⟨s′[r]:T ′⟩.T ·s′[r]:T ′, and Γ ·c:Sc,Θ⊢P▷∆′ ·s[r1]:T .
Because Γ · c:Sc,Θ ⊢ Q ▷ ∆, c ̸= s and c ̸= s′. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢
P{d/c}▷∆′{d/c} · s[r1]:T{d/c}. By (Deleg), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(SRecv) Then Q = s[r1, r2]?((s′[r])).P, ∆ = ∆′ · s[r1]:[r2]?⟨s′[r]:T ′⟩.T , and Γ · c:Sc,Θ ⊢ P ▷∆′ · s[r1]:T ·
s′[r]:T ′. Because Γ · c:Sc,Θ ⊢ P▷∆′ · s[r1]:T · s′[r]:T ′, c ̸= s and c ̸= s′. By the induction hypothesis,
Γ{d/c},Θ{d/c} ⊢ P{d/c} ▷∆′{d/c} · s[r1]:T{d/c} · s′[r]:T ′{d/c}. By (SRecv), then Γ{d/c},Θ{d/c} ⊢
Q{d/c}▷∆{d/c}.

(Par) Then, Q = P | P′, ∆ = ∆1 ·∆2, Γ · c:Sc,Θ ⊢ P ▷∆1, and Γ · c:Sc,Θ ⊢ P′ ▷∆2. By the induction
hypothesis, Γ{d/c},Θ{d/c} ⊢ P{d/c} ▷∆1{d/c} and Γ{d/c},Θ{d/c} ⊢ P′{d/c} ▷∆2{d/c}. By (Par),
then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(Res1) Then, Q = (νx)P, x♯(Γ,c,∆), and Γ · c:Sc · x:S,Θ ⊢ P▷∆. By the induction hypothesis, Γ{d/c} ·
x:S,Θ{d/c} ⊢ P{d/c}▷∆{d/c}. By (Res1), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(Rec) Then, Q = (µX,cnt= n)P, ∆ = s[r]:(µt,cnt= n)T , Γ ⊩ n:N, and Γ · c:Sc · cnt:N,Θ ·X:s[r]t ⊢
P ▷ s[r]:T . Without loss of generality, assume cnt ̸= c. By the induction hypothesis, Γ{d/c} ·
cnt:N,Θ{d/c} ·X:s[r]t ⊢ P{d/c}▷ s[r]:T{d/c}. By (Rec), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(Var) Then, Q = X, Θ = Θ′ ·X:s[r]:t, and ∆ = s[r]:t. By (Var), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(End) Then, Q = 0, ∆ = /0, and noLoop(Θ). Then noLoop(Θ{d/c}). By (End), then Γ,Θ{d/c} ⊢ Q{d/c}▷
∆.

(Crash) Then, Q =⊥ and nsr(∆). By (UCrash), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(Loop) Then, Q = s[r,R]∞cnt=n
e [(x).P0]P1;(y).P2, ∆ = ∆′ · s[r]:[R]∞cnt=n

e [⟨S0⟩.T0]T1;⟨S2⟩.T2, we have
x,y♯(Γ,c,∆,s), Γ ⊩ n:N, unr(T0), unr(T1), Γ · c:Sc · x:S0 · c:N,e:s[r]⟨S0,S2⟩ ⊢ P0 ▷ s[r]:T0, Γ · c:Sc ·
c:N,e:s[r]⟨S0,S2⟩ ⊢ P1 ▷ s[r]:T1, and Γ · c:Sc · y:S2,Θ ⊢ P2 ▷∆ · s[r]:T2. Because of the judgement
Γ · c:Sc · x:S0,e:s[r]⟨S0,S2⟩ ⊢ P0 ▷ s[r]:T0, s ̸= c. By the induction hypothesis, we have Γ{d/c} · x:S0 ·
cnt:N,e{d/c}:s[r]⟨S0,S2⟩ ⊢ P0{d/c} ▷ s[r]:T0{d/c} (program), Γ{d/c} · cnt:N,e{d/c}:s[r]⟨S0,S2⟩ ⊢
P1{d/c}▷ s[r]:T1{d/c} (loop body), and Γ{d/c} · y:S2,Θ{d/c} ⊢ P2{d/c}▷∆{d/c} · s[r]:T2{d/c} (loop
continuation). By (Loop), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(Call) Then, Q = call⟨e,ev⟩, Θ = Θ′ · e:s[r]⟨S0,S2⟩, ∆ = s[r]:call⟨e⟩, and Γ · c:Sc ⊩ ev:S0. With Γ ⊩
d:Sc, then Γ⊩ ev{d/c}:S0 and Γ{d/c}⊩ ev{d/c}:S0. By (Call), then Γ{d/c},Θ{d/c} ⊢Q{d/c}▷∆{d/c}.

(Exit) Then, Q = exit⟨e,ev⟩, Θ = Θ′ · e:s[r]⟨S0,S2⟩, ∆ = s[r]:T1, and Γ · c:Sc ⊩ ev:S2. With Γ ⊩ d:Sc,
then Γ ⊩ ev{d/c}:S2 and Γ{d/c} ⊩ ev{d/c}:S2. By (Exit), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(Res2) Then, {s[r]:G↾r | r ∈ R(G)}·{sr→r′ :[ ] | r, r′ ∈ R(G′)∧ r ̸= r′} sZ⇒ ∆′, Q = (νs)P, s♯(Γ,c,∆), a:G ∈
Γ, and Γ · c:Sc,Θ ⊢ P▷∆ ·∆′. Since Figure 5 does not pose any requirements on expressions except
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that they have to coincide on loops and matching exit-messages, {s[r]:G{d/c}↾r | r ∈ R(G{d/c})} ·
{sr→r′ :[ ] | r, r′ ∈ R(G′{d/c})∧ r ̸= r′} sZ⇒ ∆′{d/c}. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢
P{d/c}▷∆{d/c} ·∆′{d/c}. By (ResS), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(MQComR) Then, Q = sr1→r2 :⟨v⟩r#M, ∆ = sr1→r2 :⟨S⟩r#MT, Γ · c:Sc ⊩ v:S, and Γ · c:Sc,Θ ⊢ sr1→r2 :M▷
sr1→r2 :MT. Because Γ · c:Sc ⊩ v:S, s ̸= c. With Γ ⊩ d:Sc, then Γ ⊩ v{d/c}:S and Γ{d/c} ⊩ v{d/c}:S.
By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ sr1→r2 :M{d/c} ▷ sr1→r2 :MT{d/c}. By (MQComR),
then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(MQComU) Then, Q = sr1→r2 :l⟨v⟩u#M, ∆ = sr1→r2 :l′⟨S⟩u#MT, l =̇ l′, Γ · c:Sc ⊩ v:S, and Γ · c:Sc,Θ ⊢
sr1→r2 :M ▷ sr1→r2 :MT. Because Γ · c:Sc ⊩ v:S, s ̸= c. With Γ ⊩ d:Sc, then Γ ⊩ v{d/c}:S and
Γ{d/c} ⊩ v{d/c}:S. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ sr1→r2 :M{d/c}▷ sr1→r2 :MT{d/c}.
By (MQComU), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(MQBranR) Then, Q = sr1→r2 :lr#M, ∆ = sr1→r2 :l′ r#MT, l =̇ l′, and Γ · c:Sc,Θ ⊢ sr1→r2 :M ▷ sr1→r2 :MT.
Because Γ · c:Sc,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT, s ̸= c. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢
sr1→r2 :M{d/c}▷ sr1→r2 :MT{d/c}. By (MQBranR), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(MQBranW) Then, Q = sr1→r2 :lw#M, ∆ = sr1→r2 :l′w#MT, l =̇ l′, and Γ · c:Sc,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT.
Because Γ · c:Sc ⊢ sr1→r2 :M ▷ sr1→r2 :MT, s ̸= c. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢
sr1→r2 :M{d/c}▷ sr1→r2 :MT{d/c}. By (MQBranW), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(MQDeleg) Then Q = sr1→r2 :s′[r]#M, ∆ = sr1→r2 :s′[r]#MT, and Γ · c:Sc,Θ ⊢ sr1→r2 :M▷ sr1→r2 :MT. Be-
cause Γ · c:Sc,Θ ⊢ sr1→r2 :M ▷ sr1→r2 :MT, s ̸= c. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢
sr1→r2 :M{d/c}▷ sr1→r2 :MT{d/c}. By (MQDeleg), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

(MQNil) Then, Q = sr1→r2 :[ ] and ∆ = sr1→r2 :[ ]. By (MQNil), then we have Γ{d/c},Θ{d/c} ⊢ Q{d/c} ▷
∆{d/c}.

(MQExit) Then, Q = sr1→r2 :exit⟨e,v⟩#M, ∆ = sr1→r2 :exit⟨e,S⟩#MT, Γ · c:Sc ⊩ v:S, and Γ · c:Sc,Θ ⊢
sr1→r2 :M ▷ sr1→r2 :MT. Because Γ · c:Sc ⊩ v:S, s ̸= c. With Γ ⊩ d:Sc, then Γ ⊩ v{d/c}:S and
Γ{d/c} ⊩ v{d/c}:S. By the induction hypothesis, Γ{d/c},Θ{d/c} ⊢ sr1→r2 :M{d/c}▷ sr1→r2 :MT{d/c}.
By (MQExit), then Γ{d/c},Θ{d/c} ⊢ Q{d/c}▷∆{d/c}.

Subject reduction tells us that derivatives of well-typed systems are again well-typed. This ensures
that our formalism can be used to analyse processes by static type checking. We extend subject reduction
such that it provides some information on how the session environment evolves alongside reductions of
the system using s7→. In Figure 5 we define the relation s7→ between session environments that emulates the
reduction semantics.

For the proof of subject reduction (Theorem 2) we further strengthen its goal and show additionally
that there is some s such that Γ,∆′ is coherent and ∆

sZ⇒ ∆′, i.e., that the session environment evolves
by mimicking the respective reduction step and that this emulation reduces the session environment
modulo sZ⇒ w.r.t. a single session s. Moreover we use an additional goal—with weak coherence instead of
coherence—to obtain a stronger induction hypothesis for the case of Rule (Par).

Definition 5 (Weak Coherence). The type environments Γ,∆ are weakly coherent if there exists some ∆′

such that Γ,∆ ·∆′ are coherent.

Ultimately, we are however interested into coherence. Note that obviously the coherent case implies
the respective weakly coherent case. Our strengthened goal for subject reduction thus becomes:
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Γ,Θ ⊢ P▷∆∧Γ,∆ are coherent∧P 7−→ P′ −→
∃∆′. Γ,Θ ⊢ P′ ▷∆′∧Γ,∆′ are coherent∧∆

sZ⇒ ∆′

and
Γ,Θ ⊢ P▷∆∧Γ,∆ are weakly coherent∧P 7−→ P′ −→
∃∆′. Γ,Θ ⊢ P′ ▷∆′∧Γ,∆′ are weakly coherent∧∆

sZ⇒ ∆′

The proof is again similar to the proof in [24] and we highlight the differences in blue colour.

Proof of Theorem 2. The proof is by induction on the reduction P 7−→ P′ that is derived from the rules of
Figure 2.

Case of Rule (Init) In this case

P = a[n](s).Qn | ∏
1≤i≤n−1

a[i](s).Qi

P′ = (νs)P′′

P′′ = ∏
1≤i≤n

Qi | ∏
1≤i,j≤n,i ̸=j

si→j:[]

a ̸= s, and we use alpha conversion to ensure that s♯(Γ,∆). By the typing Rules (Par), (Req), and
(Acc), Γ,Θ ⊢ P ▷∆ implies that there are G, ∆Q1 , . . . ,∆Qn such that ∆ = ∆Q1 · . . . ·∆Qn , a:G ∈ Γ,
Γ⊢Qi▷∆Qi ·s[i]:G↾i for all 1≤ i≤ n, and |R(G)|= n. By Rule (MQNil), Γ,Θ⊢ si→j:[ ]▷si→j:[ ] for all
i, j∈R(G) with i ̸= j. Since s♯∆, the composition ∆ ·∆s for ∆s = {s[i]:G↾i,si→j:[ ] | i, j ∈ R(G)∧ i ̸= j}
is defined. By Rule (Par), then Γ,Θ ⊢ P′′ ▷∆ ·∆s. By Rule (T-Res2), where we use reflexivity to
obtain ∆s

sZ⇒ ∆s, then Γ,Θ ⊢ P′ ▷∆.
Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆

sZ⇒ ∆′.

Case of Rule (RSend) In this case P= s[r1, r2]!r⟨y⟩.Q | sr1→r2 :M, eval(y)= v, and P′ =Q | sr1→r2 :M#⟨v⟩r.
By the Rules (Par), (RSend), and the typing rules for message queues, Γ,Θ ⊢ P▷∆ implies that there
are ∆Q,S,T,MT such that ∆ = ∆Q · s[r1]:[r2]!r⟨S⟩.T · sr1→r2 :MT, Γ ⊩ y:S, Γ,Θ ⊢ Q▷∆Q · s[r1]:T , and
Γ,Θ ⊢ sr1→r2 :M ▷ sr1→r2 :MT. By Rule (MQComR), then Γ,Θ ⊢ sr1→r2 :M#⟨y⟩r ▷ sr1→r2 :MT#⟨S⟩r.
Since ∆Q · s[r1]:[r2]!r⟨S⟩.T · sr1→r2 :MT is defined, so is ∆′ = ∆Q · s[r1]:T · sr1→r2 :MT#⟨S⟩r. By
Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-RSend) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (RGet) In this case P = s[r1, r2]?r(x).Q | sr2→r1 :⟨v⟩r#M, P′ = Q{v/x} | sr2→r1 :M, and we use
alpha conversion to ensure that x♯(Γ,Θ,∆,s). By (Par), (RGet), and the typing rules for message
queues, Γ,Θ ⊢ P▷∆ implies that there are ∆Q,S1,S2,T,MT such that ∆ = ∆Q · s[r1]:[r2]?r⟨S1⟩.T ·
sr2→r1 :⟨S2⟩r#MT, Γ ·x:S1,Θ⊢Q▷∆Q ·s[r1]:T , Γ⊩ v:S2, and Γ,Θ⊢ sr2→r1 :M▷sr2→r1 :MT. Since Γ,∆
are coherent, S1 = S2. By Lemma 5 and because x♯(Γ,Θ,∆,s), then Γ,Θ ⊢ Q{v/x} ▷∆Q · s[r1]:T .
Since ∆Q j · s[r1]:[r2]?r⟨S⟩.T · sr2→r1 :⟨S2⟩r#MT is defined, so is ∆′ = ∆Q · s[r1]:T · sr2→r1 :MT. By
Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-RGet) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (USend) Here P = s[r1, r2]!ul⟨y⟩.Q | sr1→r2 :M, eval(y) = v, and P′ = Q | sr1→r2 :M#l⟨v⟩u.
By the Rules (Par), (USend), and the typing rules for message queues, Γ,Θ ⊢ P▷∆ implies that
there are ∆Q, l′,S,T,MT such that ∆ = ∆Q · s[r1]:[r2]!ul′⟨S⟩.T · sr1→r2 :MT, l =̇ l′, l′:S ∈ Γ, Γ ⊩
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y:S, Γ,Θ ⊢ Q ▷∆Q · s[r1]:T , and Γ,Θ ⊢ sr1→r2 :M ▷ sr1→r2 :MT. By Rule (MQComU), then Γ,Θ ⊢
sr1→r2 :M#l⟨y⟩u ▷ sr1→r2 :MT#l′⟨S⟩u. Since ∆Q · s[r1]:[r2]!ul′⟨S⟩.T · sr1→r2 :MT is defined, so is ∆′ =
∆Q · s[r1]:T · sr1→r2 :MT#l′⟨S⟩u. By Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-USend) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (UGet) Here P = s[r1, r2]?ul⟨dv⟩(x).P | sr2→r1 :l′⟨v⟩u#M, P′ = Q{v/x} | sr2→r1 :M, l =̇ l′,
and (using alpha conversion) x♯(Γ,Θ,∆,s). By (Par), (UGet), and the typing rules for message
queues, Γ,Θ ⊢ P▷∆ implies that there are ∆Q,S1,S2,T,MT such that ∆ = ∆Q · s[r1]:[r2]?ul′′⟨S1⟩.T ·
sr2→r1 :l′′′⟨S2⟩u#MT, l =̇ l′′, l′ =̇ l′′, l′′:S1 ∈ Γ, l′′′:S2 ∈ Γ, Γ · x:S1,Θ ⊢ Q▷∆Q · s[r1]:T , Γ ⊩ v:S2, and
Γ,Θ ⊢ sr2→r1 :M▷ sr2→r1 :MT. Since l′′:S1 ∈ Γ, l′′′:S2 ∈ Γ, and l′′ =̇ l =̇ l′ =̇ l′′′, we have l′′ = l′′′ and
S1 = S2. By Lemma 5 and because x♯(Γ,Θ,∆,s), then Γ,Θ ⊢ Q{v/x}▷∆Q · s[r1]:T . By Rule (Par),
then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-UGet) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (USkip) In this case P = s[r1, r2]?ul⟨dv⟩(x).P, P′ = Q{dv/x}, and we use alpha conversion
to ensure that x♯(Γ,Θ,∆,s). By (UGet), Γ ⊢ P ▷∆ implies that there are ∆Q,S,T such that ∆ =
∆Q · s[r1]:[r2]?ul′⟨S⟩.T , l =̇ l′, l′:S ∈ Γ, Γ ⊩ dv:S, and Γ · x:S,Θ ⊢ Q▷∆Q · s[r1]:T . By Lemma 5 and
because x♯(Γ,Θ,∆,s), then Γ,Θ ⊢ P′ ▷∆′ with ∆′ = ∆Q · s[r1]:T .
By Rule (T-USkip) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (ML) In this case P = sr1→r2 :l⟨v⟩u#M, P′ = sr1→r2 :M. By the typing rules for message
queues, Γ,Θ ⊢ P▷∆ implies that there are S,MT such that ∆ = sr1→r2 :l′⟨S⟩u#MT, l =̇ l′, l′:S ∈ Γ,
and Γ,Θ ⊢ P′ ▷∆′ with ∆′ = sr1→r2 :MT.
By Rule (T-ML) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (RSel) In this case P = s[r1, r2]!rl.Q | sr1→r2 :M, and P′ = Q | sr1→r2 :M#lr. By (Par), (RSel),
and the typing rules for message queues, Γ,Θ⊢P▷∆ implies that there are ∆Q, I, j,MT and for all i∈
I there are li,Ti such that ∆=∆Q ·s[r1]:[r2]!r{li,Ti}i∈I ·sr1→r2 :MT, j ∈ I, l =̇ l j, Γ,Θ⊢Q▷∆Q ·s[r1]:Tj,
and Γ,Θ ⊢ sr1→r2 :M ▷ sr1→r2 :MT. By Rule (MQBranR), then Γ,Θ ⊢ sr1→r2 :M#lr ▷ sr1→r2 :MT#lrj.
Since ∆Q · s[r1]:[r2]!r{li,Ti}i∈I · sr1→r2 :MT is defined, so is ∆′ = ∆Q · s[r1]:Tj · sr1→r2 :MT#lrj. By
Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-RSel) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (RBran) In this case P = s[r1, r2]?r{li.Qi}i∈I1
| sr2→r1 :lr#M, j ∈ I1, l =̇ l j, and P′ = Q j |

sr2→r1 :M. By the Rules (Par), (RBran), and the typing rules for message queues, Γ,Θ ⊢ P▷∆ implies
that there are ∆Q, I2,MT, l′′ and for all i ∈ I2 there are l′i,Ti such that ∆ = ∆Q · s[r1]:[r2]?r{l′i,Ti}i∈I2

·
sr2→r1 :l′′ r#MT, Γ,Θ ⊢ sr2→r1 :M▷ sr2→r1 :MT, l j =̇ l′′, and for all k ∈ I2 exists some m ∈ I1 such that
lm =̇ l′k, Γ,Θ ⊢ Qm ▷∆Q ·s[r1]:Tk. Since l =̇ l j =̇ l′′ and because Γ,∆ are coherent, there is some n ∈ I2
such that l j =̇ l′′ = ln and Γ,Θ ⊢ Q j ▷∆Q · s[r1]:Tn. Since ∆Q · s[r1]:[r2]?r{li,Ti}i∈I · sr2→r1 :l′′ r#MT is
defined, so is ∆′ = ∆Q · s[r1]:Tn · sr2→r1 :MT. By Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-RBran) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (WSel) In this case P = s[r,R]!wl.Q | ∏ri∈R sr→ri :M and P′ = Q | ∏ri∈R sr→ri :Mi#lw. Let
R = {r1, . . . ,n}. By the Rules (Par), (WSel), and the typing rules for message queues, Γ,Θ ⊢
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P ▷∆ implies that there are ∆Q, I, j,MT1, . . . ,MTn and for all i ∈ I there are li,Ti such that ∆ =
∆Q · s[r]:[R]!w{li,Ti}i∈I · sr→r1 :MT · . . . · sr→rn :MT, j ∈ I, l =̇ l j, Γ,Θ ⊢ Q ▷∆Q · s[r]:Tj, and Γ,Θ ⊢
sr→r1 :M1 ▷ sr→r1 :MT1, . . . , Γ,Θ ⊢ sr→rn :Mn ▷ sr→rn :MTn. By Rule (MQBranW), then Γ,Θ ⊢
sr→r1 :M1#lw ▷ sr→r1 :MT1#lwj , . . . , Γ,Θ ⊢ sr→rn :Mn#lw ▷ sr→rn :MTn#lwj . Since the session envi-
ronment ∆Q · s[r]:[R]!w{li,Ti}i∈I · sr→r1 :MT1 · . . . · sr→rn :MTn is defined, so is ∆′ = ∆Q · s[r]:Tj ·
sr→r1 :MT1#lwj · . . . · sr→rn :MTn#lwj .

By Rule (T-WSel) of Figure 5, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then

Γ,∆′ are coherent.

Case of Rule (WBran) Here P = s[r1, r2]?w{li.Qi}i∈I1,ld | sr2→r1 :lw#M, j ∈ I1, l =̇ l j, and P′ = Q j |
sr2→r1 :M. By the Rules (Par), (WBran), and the typing rules for message queues, Γ,Θ ⊢ P ▷
∆ implies that there are ∆Q, l′d, I2,MT, l′′ and for all i ∈ I2 there are l′i,Ti such that ∆ = ∆Q ·
s[r1]:[r2]?w{l′i,Ti}i∈I2,l′d

· sr2→r1 :l′′w#MT, ld =̇ l′d, Γ,Θ ⊢ sr2→r1 :M ▷ sr2→r1 :MT, l j =̇ l′′, and for all
k ∈ I2 exists some m ∈ I1 such that lm =̇ l′k, Γ,Θ ⊢ Qm ▷∆Q · s[r1]:Tk. Since l =̇ l j =̇ l′′ and be-
cause Γ,∆ are coherent, there is some n ∈ I2 such that l j =̇ l′′ = ln and Γ,Θ ⊢ Q j ▷∆Q · s[r1]:Tn.
Since ∆Q · s[r1]:[r2]?w{li,Ti}i∈I,l′d

· sr2→r1 :l′′w#MT is defined, so is ∆′ = ∆Q · s[r1]:Tn · sr2→r1 :MT. By
Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-WBran) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒,
then Γ,∆′ are coherent.

Case of Rule (WSkip) In this case P = s[r1, r2]?w{li.Qi}i∈I1,ld and P′ = Qd. By the Rule (WSkip),
Γ,Θ ⊢ P ▷∆ implies that there are ∆Q, l′d, I2 and for all i ∈ I2 there are l′i,Ti such that ∆ = ∆Q ·
s[r1]:[r2]?w{l′i,Ti}i∈I2,l′d

, ld =̇ l′d, and for all k ∈ I2 exists some m ∈ I1 such that lm =̇ l′k, Γ,Θ ⊢
Qm ▷∆Q · s[r1]:Tk. Since ld =̇ l′d, there is some n ∈ I2 such that ld =̇ l′d = ln and Γ,Θ ⊢ P′ ▷∆′ with
∆′ = ∆Q · s[r1]:Td.
By Rule (T-WSkip) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (LStep) In this case

P = s[r,R]∞c=n
e [(x).Q0]Q1;(y).Q2 | Q,

P′ = s[r,R]∞c=n
e [(x).Q0]Q′

1;(y).Q2 | Q′,

Q1 | Q 7−→ Q′
1 | Q′, and onlyMQr↔R(Q,Q′). By Rules (Par), (Loop), and the typing rules for

message queues, Γ,Θ ⊢ P ▷∆ implies that there are ∆Q,∆Q2 ,S0,S2,T0,T1,T2 such that ∆ = ∆Q2 ·
s[r]:[R]∞c=n

e [⟨S0⟩.T0]T1;⟨S2⟩.T2 ·∆Q, x,y♯(Γ,∆Q2 ,s,e,c,T0,T1,T2), Γ ⊩ n:N, unr(T0), unr(T1),

Γ · x:S0 · c:N,e:s[r]⟨S0,S2⟩ ⊢ Q0 ▷ s[r]:T0,

Γ · c:N,e:s[r]⟨S0,S2⟩ ⊢ Q1 ▷ s[r]:T1,

Γ · y:S,Θ ⊢ Q2 ▷∆Q2 · s[r]:T2, and Γ,Θ ⊢ Q▷∆Q.

By Rule (Par), then Γ · c:N,Θ · e:s[r]⟨S0,S2⟩ ⊢ Q1 | Q ▷ s[r]:T1 ·∆Q. Since Γ,∆ are coherent, Γ ·
c:N,Θ · e:s[r]⟨S0,S2⟩ are weakly coherent. By the induction hypothesis (for the weakly coherent
case), Γ · c:N,Θ · e:s[r]⟨S0,S2⟩ ⊢ Q′

1 | Q′ ▷∆′
1 for some ∆′

1 with s[r]:T1 ·∆Q
sZ⇒ ∆′

1. By Rule (Par)
and global weakening, then there are T ′

1 and ∆′
Q such that ∆′

1 = s[r]:T ′
1 ·∆′

Q, Γ · c:N,e:s[r]⟨S0,S2⟩ ⊢
Q′

1 ▷ s[r]:T ′
1 and Γ,Θ ⊢ Q′ ▷∆′

Q. By Rule (Loop), then Γ,Θ ⊢ s[r,R]∞c=n
e [(x).Q0]Q′

1;(y).Q2 ▷∆Q2 ·
s[r]:[R]∞c=n

e [⟨S0⟩.T0]T ′
1;⟨S2⟩.T2. By Rule (Par), then Γ,Θ ⊢ P′ ▷ ∆′ with the resulting session
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environment ∆′ = ∆Q2 · s[r]:[R]∞c=n
e [⟨S0⟩.T0]T ′

1;⟨S2⟩.T2 ·∆′
Q.

Since s[r]:T1 ·∆Q
sZ⇒ s[r]:T ′

1 ·∆′
Q and by (T-LStep), then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by
transitivity of sZ⇒, then Γ,∆′ are coherent.

Case of Rule (LCall) In this case

P = s[r,R]∞c=n
e [(x).Q0]call⟨el,ev⟩;(y).Q2,

P′ = s[r,R]∞c=eval(n+1)
e [(x).Q0] (Q0{n/c}){v/x};(y).Q2,

eval(e) = eval(el), and eval(ev) = v. By the Rules (Loop) and (Call), Γ,Θ ⊢ P ▷∆ implies that
there are some ∆Q2 ,S0,S2,T0,T1,T2 such that ∆ = ∆Q2 · s[r]:[R]∞c=n

e [⟨S0⟩.T0]call⟨e⟩;⟨S2⟩.T2, the
variables x,y,c are fresh, i.e., x,y♯(Γ,∆Q2 ,s,e,c,T0,T2), Γ ⊩ n:N, unr(T0),

Γ · x:S0 · c:N,e:s[r]⟨S0,S2⟩ ⊢ Q0 ▷ s[r]:T0,

Γ · c:N,e:s[r]⟨S0,S2⟩ ⊢ call⟨el,ev⟩▷ s[r]:call⟨e⟩,
Γ · y:S,Θ ⊢ Q2 ▷∆Q2 · s[r]:T2,

and Γ ⊩ ev:S0. Since eval(ev) = v, then Γ ⊩ v:S0. By Lemma 5 and x♯(Γ,∆Q2 ,s,e,c,T0,T2),
then Γ,e:s[r]⟨S0,S2⟩ ⊢ (Q0{n/c}){v/x} ▷ s[r]:T0{n/c}. By Rule (Loop), then Γ,Θ ⊢ P′ ▷ ∆′ with
∆′ = ∆Q2 · s[r]:[R]∞

c=eval(n+1)
e [⟨S0⟩.T0]T0{n/c};⟨S2⟩.T2.

By Rule (T-Call) of Figure 5, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then

Γ,∆′ are coherent.

Case of Rule (LExitS) In this case P = s[r,R]∞c=n
e [(x).Q0]exit⟨el,ev⟩;(y).Q2 | ∏ri∈R sr→ri :Mi, P′ =

Q2{v/y} |∏ri∈R sr→ri :Mi#exit⟨id,v⟩, eval(e)= eval(el)= id, and eval(ev)= v. Let R= {r1, . . . , rn}.
By the Rules (Par), (Loop), (Exit), and the typing rules for message queues, Γ,Θ ⊢ P▷∆ implies
that there are ∆Q2 ,S,S0,T0,T1,T2,MT1, . . .MTn such that ∆=∆Q2 ·s[r]:[R]∞c=n

e [⟨S0⟩.T0]T1;⟨S2⟩.T2 ·
∏ri∈R sr→ri :MTi, we have x,y♯(Γ,∆Q2 ,s,e,c,T0,T1,T2), Γ ⊩ n:N, unr(T0), unr(T1),

Γ · x:S0 · c:N,e:s[r]⟨S0,S2⟩ ⊢ Q0 ▷ s[r]:T0,

Γ · c:N,e:s[r]⟨S0,S2⟩ ⊢ exit⟨el,ev⟩▷ s[r]:T1,

Γ · y:S,Θ ⊢ Q2 ▷∆Q2 · s[r]:T2,

Γ⊩ ev:S2, and Γ⊢ sr→ri :Mi▷sr→ri :MTi for all ri ∈R. Since eval(ev)= v, then Γ⊩ v:S0. By Lemma 5
and because y♯(Γ,∆Q2 ,s,e,c,T0,T1,T2), then Γ,Θ ⊢ Q2{v/y} ▷∆Q2 · s[r]:T2. By Rule (MQExit),
Γ,Θ ⊢ sr→ri :exit⟨l,v⟩#Mi ▷ sr→ri :exit⟨l,S⟩#MTi for all ri ∈ R. Since the session environment
∆ = ∆Q2 · s[r]:[R]∞c=n

e [⟨S0⟩.T0]T1;⟨S2⟩.T2 ·∏ri∈R sr→ri :MTi is defined, so is the session environment
∆′ = ∆Q2 · s[r]:T2 ·∏ri∈R sr→ri :exit⟨l,S⟩#MTi. By Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-LExitS), then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then Γ,∆′ are
coherent.

Case of Rule (LExitG) In this case

P = s[r,R]∞c=n
e [(x).Q0]Q1;(y).Q2 | sre→r:exit⟨id,v⟩#M,

P′ = Q2{v/y} | sre→r:M,

eval(e) = id, and re ∈ R. By Rules (Par), (Loop), (MQExit), and the typing rules for message
queues, the judgement Γ,Θ⊢ P▷∆ implies that there are ∆Q,∆Q2 ,S0,S2,T0,T1,T2,MT such that ∆=
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∆Q2 ·s[r]:[R]∞c=n
e [⟨S0⟩.T0]T1;⟨S2⟩.T2 ·sre→r:exit⟨e,S2⟩#MT, we have x,y♯(Γ,∆Q2 ,s,e,c,T0,T1,T2),

Γ ⊩ n:N, unr(T0), unr(T1),

Γ · x:S0 · c:N,e:s[r]⟨S0,S2⟩ ⊢ Q0 ▷ s[r]:T0,

Γ · c:N,e:s[r]⟨S0,S2⟩ ⊢ Q1 ▷ s[r]:T1,

Γ · y:S,Θ ⊢ Q2 ▷∆Q2 · s[r]:T2, Γ,Θ ⊢ sre→r:M▷ sre→r:MT,

and Γ ⊩ v:S2. By Lemma 5 and because y♯(Γ,∆Q2 ,s,e,c,T0,T1,T2), then Γ,Θ ⊢ Q2{v/y} ▷∆Q2 ·
s[r]:T2. Since ∆Q2 · s[r]:[R]∞c=n

e [⟨S0⟩.T0]T1;⟨S2⟩.T2 · sre→r:exit⟨e,S2⟩#MT is defined, so is ∆′ =
∆Q2 · s[r]:T2 · sre→r:MT. By Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-LExitG), then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then Γ,∆′ are
coherent.

Case of Rule (EDrop) In this case P = sr2→r1 :exit⟨id,v⟩#M and P′ = sr2→r1 :M. By the typing rules
for message queues, Γ,Θ ⊢ P▷∆ implies that there are S,MT such that ∆ = sr2→r1 :exit⟨e,S⟩#MT,
eval(e) = id, and Γ,Θ ⊢ P′ ▷∆′ with ∆′ = sr2→r1 :MT.
By Rule (T-EDrop) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (Crash) In this case FPcrash and P′ =⊥. By the typing rules and Condition 1.1, Γ,Θ⊢P▷∆

and FPcrash imply nsr(∆). By Rule (Crash), then Γ,Θ ⊢ ⊥▷∆.
Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆

sZ⇒ ∆′.

Case of Rule (If-T) In this case P = if e then Q else Q′ and P′ = Q. By Rule (If), Γ,Θ ⊢ P▷∆ implies
Γ,Θ ⊢ P′ ▷∆.
Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆

sZ⇒ ∆′.

Case of Rule (If-F) In this case P = if e then Q else Q′ and P′ = Q′. By Rule (If), Γ,Θ ⊢ P▷∆ implies
Γ,Θ ⊢ P′ ▷∆.
Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆

sZ⇒ ∆′.

Case of Rule (Deleg) In this case P = s[r1, r2]!⟨⟨s′[r]⟩⟩.Q | sr1→r2 :M and P′ = Q | sr1→r2 :M#s′[r]. By
the Rules (Par), (Deleg), and the typing rules for message queues, Γ,Θ ⊢ P ▷ ∆ implies that
there are ∆Q,T,T ′,MT such that ∆ = ∆Q · s[r1]:[r2]!⟨s′[r]:T ′⟩.T · s′[r]:T ′ · sr1→r2 :MT, Γ,Θ ⊢ Q▷∆Q ·
s[r1]:T , and Γ,Θ ⊢ sr1→rs :MT ▷ sr1→r2 :MT. By Rule (MQDeleg), then Γ,Θ ⊢ sr1→rs :MT#s′[r] ▷
sr1→r2 :MT#s′[r]. Since ∆ = ∆Q · s[r1]:[r2]!⟨s′[r]:T ′⟩.T · s′[r]:T ′ · sr1→r2 :MT is defined, so is ∆′ =
∆Q · s[r1]:T · sr1→r2 :MT#s′[r]. By Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-Deleg) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (SRecv) In this case P = s[r1, r2]?((s′[r])).Q | sr2→r1 :s′′[r′]#M and P′ = Q{s′′/s′}{r′/r} | M.
We use alpha conversion to ensure that s′ = s′′ and r = r′′. By the Rules (Par), (SRecv), and
the typing rules for message queues, Γ,Θ ⊢ P ▷∆ implies that there are ∆Q,T,T ′,MT such that
∆=∆Q ·s[r1]:[r2]?⟨s′[r]:T ′⟩.T ·sr2→r1 :s′[r]#MT, Γ,Θ⊢Q▷∆Q ·s[r1]:T ·s′[r]:T ′, and Γ,Θ⊢ sr2→r1 :M▷
sr2→r1 :MT. Since ∆ = ∆Q · s[r1]:[r2]?⟨s′[r]:T ′⟩.T · sr2→r1 :s′′[r′]#MT is defined, so is ∆′ = ∆Q · s[r1]:T ·
s′[r]:T ′ · sr2→r1 :MT. By Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By Rule (T-SRecv) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.
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Case of Rule (Par) In this case P = Q1 | Q2, Q1 7−→ Q′
1, and P′ = Q′

1 | Q2. By Rule (Par), Γ,Θ ⊢ P▷∆

implies that there are ∆Q1 ,∆Q2 such that ∆ = ∆Q1 ·∆Q2 , Γ,Θ ⊢ Q1 ▷∆Q1 , and Γ,Θ ⊢ Q2 ▷∆Q2 . Since
Γ,∆ are coherent, Γ,∆Q1 is weakly coherent. By the induction hypothesis (for the weakly coherent
case), Γ,Θ ⊢ Q′

1 ▷ ∆′
Q1

with ∆Q1

sZ⇒ ∆′
Q1

. Since ∆Q1 · ∆Q2 is defined, so is ∆′ = ∆Q1 · ∆Q2 . By
Rule (Par), then Γ,Θ ⊢ P′ ▷∆′.
By ∆Q1

sZ⇒ ∆′
Q1

, then ∆
sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then Γ,∆′ are

coherent.

Case of Rule (Res) In this case P = (νx)Q, Q 7−→ Q′, and P′ = (νx)Q′. Then, one of the Rules (Res1)
or (Res2) was used to type the restriction on x in P.

Case of (Res1) Then there is some S such that x♯(Γ,∆) and Γ · x:S,Θ ⊢ Q ▷∆. Since Γ,∆ are
coherent, so are Γ · x:S,∆. By the induction hypothesis, Γ · x:S,Θ ⊢ Q′ ▷∆′ for some ∆′ such
that Γ,∆′ is coherent and ∆

sZ⇒ ∆′. With Rule (Res1), then Γ,Θ ⊢ P′ ▷∆′.
Case of (Res2) In this case x = s and there are G,a,∆′′ such that s♯(Γ,∆), {s[r]:G↾r | r ∈ R(G)} ·

{sr→r′ :[ ] | r, r′ ∈ R(G′)∧ r ̸= r′} sZ⇒ ∆′′, a:G ∈ Γ, and Γ,Θ ⊢ Q ▷∆ ·∆′′. Then Γ,∆ ·∆′′ are
coherent. By the induction hypothesis, Γ,Θ ⊢ Q′ ▷∆′′′ for some ∆′′′ such that ∆ ·∆′′ sZ⇒ ∆′′′. By
Rule (Res2), then Γ,Θ ⊢ P′ ▷∆. Since ∆′ = ∆, Γ,∆′ is coherent and, by reflexivity, ∆

sZ⇒ ∆′.

Case of (Rec) In this case P = (µX,c= n)Q and P′ = (Q{n/c}){(µX,c=eval(n+1))Q/X}. We use alpha
conversion to ensure that c♯(Γ,Θ,∆). By Rule (Rec), then there are ∆Q,s, r, t,T such that ∆ =
∆Q · s[r]:(µt,c= n)T , Γ ⊩ n:N, and Γ · c:N,Θ ·X:s[r]:t ⊢ Q ▷ ∆Q · s[r]:T . Since c♯(Γ,Θ,∆) and
because of Lemma 5, then Γ,Θ ·X:s[r]:t ⊢ Q{n/c}▷∆Q · s[r]:T{n/c}. By replacing in the proof tree of
Γ,Θ ·X:s[r]:t ⊢ Q{n/c}▷∆Q · s[r]:T{n/c} all occurrences of Rule (Var) by the proof tree, we obtain
Γ,Θ ⊢ P′ ▷∆′ with ∆′ = ∆Q · s[r]:(T{n/c}){(µt,c=eval(n+1))T/t}.
By Rule (T-Rec) of Figure 5, then ∆

sZ⇒ ∆′. Since Γ,∆ are coherent and by transitivity of sZ⇒, then
Γ,∆′ are coherent.

Case of Rule (Struc) In this case P ≡ Q, Q 7−→ Q′, Q′ ≡ P′. By Lemma 4, Γ,Θ ⊢ P▷∆ and P ≡ Q imply
Γ,Θ ⊢ Q▷∆. By the induction hypothesis, Γ,Θ ⊢ Q′ ▷∆′ for some ∆′ such that ∆

sZ⇒ ∆′ and Γ,∆′ are
coherent. By Lemma 4, then Γ,Θ ⊢ P′ ▷∆′.

Since we restrict our attention to linear environments, type judgements ensure linearity of session
channels. With subject reduction, this holds for all derivatives of well-typed processes.

Lemma 6 (Linearity). Let Γ ⊢ P▷∆, Γ,∆ be coherent, and there are no name clashes on session channels.
Then all session channels of P are linear, i.e., for all P 7−→∗ P′ and all s, r, r1, r2 there is at most one
unguarded actor s[r] and at most one queue sr1→r2 in P′.

Proof. By Theorem 2, there is some ∆′ such that Γ ⊢ P′ ▷∆′ and Γ,∆′ are coherent. By the Definition 2 of
coherence and projection, ∆′ contains at most one actor s[r] and at most one queue sr1→r2 for each a:G ∈ Γ

and r ∈ R(G). By the Figures 3 and 4, only the Rules (Req), (Acc), and (Res2) can introduce new actors
or queues. The linearity of global environments ensures, that all new actors and queues introduced by the
rules are on fresh channel names and are pairwise distinct. The Rules (Req) and (Acc) introduce exactly
one actor each on a fresh session channel s that is bound by a prefix for session initialisation. Rule (Res2)
introduces assignments for actors and queues for pairwise different roles on a fresh session channel s that
is bound by restriction. Since there are no name clashes, the session channels in binders are pairwise
different and distinct from free session channels. By the typing rules and because Γ,Θ ⊢ P′ ▷∆′, all actors
and queues in P′ have to satisfy their specification as described by an assignment of this actor or queue
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towards a local type. By the linearity of session environments and since new assignments for actors result
from bound session channels, all unguarded actors and queues in P′ are pairwise different.

For strongly reliable systems coherence ensures that for each actor there is a matching communication
partner. In the case of asynchronous communication, this means that for each sender (or message on
a queue) there is a receiver and for each receiver there is a sender or a message on a queue, where the
receiver as well as the sender or the message queue appear under the same binder of the session channel or
both are free. In the case of unreliable communication, messages get lost, senders can crash, and receivers
can crash themselves or suspect the sender. In the case of weakly reliable branching for each sender (or
message on a queue) there are all specified receivers that are not crashed and vice versa.

We summarise these properties of strongly reliable and weakly reliable interactions in error-freedom
that we inherit verbatim from [24]: for each strongly reliable sender or message there is a matching
receiver and vice versa, for each weakly reliable sender or message there is a possibly crashed receiver
and vice versa. We obtain similar requirements for session delegation.

Lemma 7 (Error-Freedom). If Γ ⊢ P▷∆ and Γ,∆ is coherent then:
• for each unguarded s[r1, r2]!r⟨y⟩.Q1 and each message ⟨y⟩r on a message queue sr1→r2 in P there is

some s[r2, r1]?r(x).Q2 in P,
• for each unguarded s[r2, r1]?r(x).Q2 in P there is some s[r1, r2]!r⟨y⟩.Q1 or a message ⟨y⟩r on a

message queue sr1→r2 in P,
• for each unguarded s[r1, r2]!rl.Q and each message lr on a message queue sr1→r2 in P there is some

j ∈ I and s[r2, r1]?r{li.Qi}i∈I in P with l j =̇ l,
• for each unguarded s[r2, r1]?r{li.Qi}i∈I in P there is j ∈ I and s[r1, r2]!rl.Q or a message lr on a

message queue sr1→r2 in P with l j =̇ l,
• for each unguarded s[r,R]!wl.Q and each message lw on a message queue sr→r′ in P and each r′ ∈ R

there is some s[r′, r]?w{li.Pi}i∈I,ld and j ∈ I in P with l j =̇ l or P does not contain an actor s[r′],
• for each unguarded s[r′, r]?w{li.Pi}i∈I,ld in P there is j ∈ I and s[r,R]!wl.Q or a message lw on a

message queue sr→r′ in P with l j =̇ l and r′ ∈ R or P does not contain an actor s[r],
• for each unguarded s[r1, r2]!⟨⟨s′[r]⟩⟩.Q1 and each message s′[r] on a message queue sr1→r2 in P there

is some s[r2, r1]?((s′′[r′])).Q2 in P, and
• for each unguarded s[r2, r1]?((s′′[r′])).Q2 in P there is some s[r1, r2]!⟨⟨s′[r]⟩⟩.Q1 or a message s′[r]

on a message queue sr1→r2 in P.

Proof. By coherence and projection for each strongly reliable and each weakly reliable sender there is
initially a matching receiver for each free session channel in the session environment. By the typing
rules and Rule (Res2) in particular, this holds also for restricted session channels. Session environments
may evolve using s7→ but all such steps preserve the above defined requirements, i.e., strongly reliable or
weakly reliable send prefixes can be mapped onto the type of the respective message in a queue but no
such message can be dropped. The typing rules ensure that the processes follow their specification in the
local types of session environments. Then, the first four and the last two cases follow from the typing
rules and coherence, and the fact that only unreliable processes can crash. The remaining two cases follow
from the typing rules and coherence.

Session fidelity claims that the interactions of a well-typed process follow exactly the specification
described by its global types, i.e., if a system is well-typed w.r.t. to coherent type environments then the
system follows its specification in the global type. One direction of this property already follows from the
above variant of subject reduction. The steps of well-typed systems are reflected by corresponding steps
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of the session environment and, thus, respect their specification in global types. What remains to show is
that the specified interactions can indeed be performed. The above formulation of error-freedom alone is
not strong enough to show this, because it ensures only the existence of matching communication partners
and not that they can be unguarded.

To obtain session fidelity we prove progress. Progress states that no part of a well-typed and coherent
system can block other parts, that eventually all matching communication partners as described by error-
freedom are unguarded, that interactions specified by the global type can happen, and that there are no
communication mismatches. Subject reduction and progress together then imply session fidelity, i.e., that
processes behave as specified in their global types.

In the literature there are different formulations of progress. We are interested in a rather strict
definition of progress that ensures that well-typed systems cannot block. Therefore, we need an additional
assumption on session requests and acceptances. Coherence ensures the existence of communication
partners within sessions only. If we want to avoid blocking, we need to be sure, that no participant
of a session is missing during its initialisation. Note that without action prefixes all participants either
terminated or crashed.

Proof of Theorem 3. 1.) If P contains an unguarded conditional, then it can perform a step P 7−→ P′ such
that Γ,Θ ⊢ P′ ▷∆ using one of the Rules (If-T) or (If-F) as described in the corresponding cases of the
proof of Theorem 2. Similarly, if P contains an unguarded recursion, then it can perform a step P 7−→ P′

such that Γ,Θ ⊢ P′ ▷∆′ with ∆
s7→ ∆′ using Rule (Rec) as described in the corresponding case of the proof

of Theorem 2. Assume that P is not structural congruent to 0 and does not contain unguarded conditionals
or recursions.

Since P is not structural congruent to 0 it contains session channels. All session channels of P that are
not contained in ∆ are bound in P, i.e., the names of ∆ are exactly the free session channels of P. Since
there are no cyclic dependencies between sessions, we can pick a minimal session in P, i.e., a session
such that its next action is not blocked by any action of another session or session delegation. Let s denote
this session channel. By the typing rules in the Figures 3 and 4, there are some G,b such that b:G ∈ Γ

and G specifies the session s. Since the next action of this session is not blocked, P contains at least one
unguarded prefix or at least one unguarded not empty queue on s. Among all such unguarded prefixes and
messages that are head of a queue we pick a minimal, i.e., one that is typed by the projection of a part of
G such that no part of G that is guarding it is used to type another unguarded prefix or message in P:

a[n](s).Q Then s♯∆ and a:G ∈ Γ. By the assumption on session initialisation, then for all 1 ≤ ri < n we
have a[ri](s). in P. Since s is minimal, all these session acceptances are unguarded. By Rule (Init),
then P 7−→ P′.

a[r](s).Q Then s♯∆ and a:G ∈ Γ. By the assumption on session initialisation, then a[n](s).Q and for all
1 ≤ ri < n with ri ̸= r we have a[ri](s). in P. Since s is minimal, all this session request and these
session acceptances are unguarded. By Rule (Init), then P 7−→ P′.

s[r1, r2]!r⟨y⟩.Q If s♯∆ then the typing rules in the Figures 3 and 4 and (Req), (Acc), and (Res2) in particular
ensure that sr1→r2 :MT in P. If s is free in ∆, then sr1→r2 :MT in P because of coherence. Since s and
the action are minimal, sr1→r2 :MT is unguarded. By Rule (RSend), then P 7−→ P′.

sr1→r2 :⟨v⟩r#M By Lemma 7, then s[r2, r1]?r(x).Q in P. Since s and the action are minimal, s[r2, r1]?r(x).Q
is unguarded. By Rule (RGet), then P 7−→ P′.

s[r2, r1]?r(x).Q By Lemma 7, then sr1→r2 :⟨v⟩r#M in P. Since s and the action are minimal, sr1→r2 :⟨v⟩r#M
is unguarded. By Rule (RGet), then P 7−→ P′.
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s[r1, r2]!ul⟨y⟩.Q If s♯∆ then the typing rules in the Figures 3 and 4 and (Req), (Acc), and (Res2) in
particular ensure that sr1→r2 :MT in P. If s is free in ∆, then sr1→r2 :MT in P, because of coherence.
Since s and the action are minimal, sr1→r2 :MT is unguarded. By Rule (USend), then P 7−→ P′.

sr1→r2 :l⟨v⟩u#M Then the typing rules and coherence ensure that either there is no actor s[r2], the actor
s[r2] had skipped, or s[r2, r1]?ul⟨dv⟩(x).Q in P. If there is no actor s[r2], then it has crashed. Then
the pattern FPcrash(Q, . . .) was satisfied with s[r2] ∈ A(Q). By Condition 1.5, then eventually
FPml(s, r1, r2, l, . . .). By Rule (ML), then P 7−→ P′. If the actor s[r2] skipped this reception, then
FPuskip(s, r2, r1, l, . . .). By Condition 1.3, then FPml(s, r1, r2, l, . . .). By Rule (ML), then P 7−→ P′.
If s[r2, r1]?ul⟨dv⟩(x).Q in P, since s and the action are minimal, then this term is unguarded. By
Condition 1.2 and Rule (UGet), then P 7−→ P′.

s[r2, r1]?ul⟨dv⟩(x).Q Then the typing rules and coherence ensure that there is the queue sr1→r2 and either
l⟨v⟩u is on top of it, or this message was dropped, or the sender did not yet send this message, or
the sender crashed before transmitting this message. If l⟨v⟩u is on top of the queue, then P 7−→ P′

by Rule (UGet) and Condition 1.2. If the message was dropped, then FPml(s, r1, r2, l, . . .). By
Condition 1.3, then FPuskip(s, r2, r1, l, . . .). By Rule (USkip), then P 7−→ P′. If the sender did not
yet send the message, we proceed as in the Case s[r1, r2]!ul⟨y⟩.Q above. If the sender crashed, then
FPcrash(Q, . . .) with s[r1] ∈ A(Q). By Condition 1.4, then eventually FPuskip(s, r2, r1, l, . . .). By
Rule (USkip), then P 7−→ P′.

s[r1, r2]!rl.Q If s♯∆ then the typing rules in the Figures 3 and 4 and (Req), (Acc), and (Res2) in particular
ensure that sr1→r2 :MT in P. If s is free in ∆, then sr1→r2 :MT in P, because of coherence. Since s and
the action are minimal, sr1→r2 :MT is unguarded. By Rule (RSel), then P 7−→ P′.

sr1→r2 :lr#M By Lemma 7, then s[r2, r1]?r{li.Qi}i∈I in P. Since s and the action are minimal, the action
s[r2, r1]?r{li.Qi}i∈I is unguarded. By (RBran), then P 7−→ P′.

s[r2, r1]?r{li.Qi}i∈I By Lemma 7, then sr1→r2 :lr#M in P with j ∈ I and l =̇ l j. Since s and the action are
minimal, sr1→r2 :lr#M is unguarded. By (RBran), then P 7−→ P′.

s[r,R]!wl.Q If s♯∆ then the typing rules and (Req), (Acc), and (Res2) in particular ensure that sr→ri :MTi

in P for all ri ∈ R. If s is free in ∆, then sr→ri :MTi in P for all ri ∈ R, because of coherence. Since s
and the action are minimal, all sr→ri :MTi are unguarded. By Rule (WSel), then P 7−→ P′.

sr1→r2 :lw#M Then the typing rules, coherence, and Condition 1.6 ensure that either there is no actor s[r2]
or s[r2, r1]?w{li.Qi}i∈I,ld in P. In the former case the actor s[r2] has crashed. Then, since the message
queue will not be needed any more, proceed with the next session and action that are minimal if
you ignore the queue sr1→r2 .

s[r2, r1]?w{li.Qi}i∈I,ld Then the typing rules and coherence ensure that there is the queue sr1→r2 and
either lw is on top of it, or the sender did not yet send this message, or the sender crashed before
transmitting this message. If lw is on top of the queue, then P 7−→ P′ by Rule (WBran). If the sender
did not yet send the message, we proceed as in the Case s[r,R]!wl.Q above. If the sender crashed,
then FPcrash(Q′, . . .) with s[r1] ∈ Q′. By Condition 1.4, then eventually FPwskip(s, r2, r1, l, . . .) for
s[r2]. By Rule (WSkip), then P 7−→ P′.

s[r1, r2]!⟨⟨s′[r]⟩⟩.Q If s♯∆ then the typing rules in the Figures 3 and 4 and (Req), (Acc), and (Res2) in
particular ensure that sr1→r2 :MT in P. If s is free in ∆, then sr1→r2 :MT in P because of coherence.
Since s and the action are minimal, sr1→r2 :MT is unguarded. By Rule (Deleg), then P 7−→ P′.

sr1→r2 :s′[r]#M By Lemma 7, then s[r2, r1]?((s′′[r′])).Q in P. Since s and the action are minimal, the action
s[r2, r1]?((s′′[r′])).Q is unguarded. By Rule (SRecv), then P 7−→ P′.
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s[r2, r1]?((s′′[r′])).Q By Lemma 7, then sr1→r2 :s′[r]#M in P. Since s and the action are minimal, the action
sr1→r2 :s′[r]#M is unguarded. By Rule (SRecv), then P 7−→ P′.

call⟨el,ev⟩ By the typing rules in the Figures 3 and 4 and (Req), (Acc), and (Res2) in particular or by
coherence, call⟨el,ev⟩ is in the loop body of an unguarded loop eval(el) in P. By Rule (LCall),
then P 7−→ P′.

exit⟨el,ev⟩ By the typing rules in the Figures 3 and 4 and (Req), (Acc), and (Res2) in particular or
by coherence, exit⟨el,ev⟩ is in the loop body of an unguarded loop eval(el) in P. Let s[r] be the
channel of this loop and R its remaining roles. If s♯∆ then the typing rules in the Figures 3 and 4
and (Req), (Acc), and (Res2) in particular ensure that sr→ri :MT in P for all ri ∈ R. If s is free in ∆,
then sr→ri :MT in P for all ri ∈ R, because of coherence. Since s and the action are minimal, these
sr→ri :MT are unguarded for all ri ∈ R. By Rule (LExitS), then P 7−→ P′.

sr1→r2 :exit⟨id,v⟩#M Then the typing rules and coherence ensure that either there is no actor s[r2], the
actor s[r2] already terminated the loop id, or the actor s[r2] still has the loop id in P. If there is no
actor s[r2], then it has crashed. Then the pattern FPcrash(Q, . . .) was satisfied with s[r2] ∈ A(Q). By
Condition 1.5, then eventually FPdrop(r2, id). By Rule (EDrop), then P 7−→ P′. If the actor s[r2]
already terminated the loop, then eventually FPdrop(r2, id), by Condition 1.7. By Rule (EDrop),
then P 7−→ P′. If the loop is still in P, since s and the action are minimal, then this loop is unguarded.
By Rule (LExitG), then P 7−→ P′.

2.) By Theorem 2, P′ is well-typed w.r.t. coherent Γ,∆′ with ∆
sZ⇒ ∆′. If P does not contain recursion or

loops, then the session environment strictly reduces with every reduction of the process that does not
reduce a conditional, though it may grow in cases of session initialisation. Since P is finite and loop-free
there are only finitely many possible session initialisations. We can repeat the above proof for 1.) to show
that P cannot get stuck as long as it contains action prefixes.
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